Dissolution and Hydrolysis of Bleached Kraft Pulp Using Ionic Liquids

Forestry industries in Chile are facing an important challenge—diversifying their products using green technologies. In this study, the potential use of Ionic Liquids (ILs) to dissolve and hydrolyze eucalyptus wood (mix of Eucalyptus nitens and Eucalyptus globulus) kraft pulp was studied. The Bleached Hardwood Kraft Pulp (BHKP) from a Chilean pulp mill was used together with five different ILs: 1-butyl-3-methylimidazolium chloride [bmim][Cl], 1-butyl-3-methylimidazolium acetate [bmim][Ac], 1-butyl-3-methylimidazolium hydrogen sulfate [bmim][HSO4], 1-ethyl-3-methylimidazolium chloride [emim][Cl], 1-ethyl-3-methylimidazolium acetate [emim][Ac]. Experimentally, one vacuum reactor was designed to study the dissolution/hydrolysis process for each ILs; particularly, the cellulose dissolution process using [bmim][Cl] was studied proposing one molecular dynamic model. Experimental characterization using Atomic Force Microscopy, conductometric titration, among other techniques suggest that all ILs are capable of cellulose dissolution at different levels; in some cases, the dissolution evolved to partial hydrolysis appearing cellulose nanocrystals (CNC) in the form of spherical aggregates with a diameter of 40–120 nm. Molecular dynamics simulations showed that the [bmim][Cl] anions tend to interact actively with cellulose sites and water molecules in the dissolution process. The results showed the potential of some ILs to dissolve/hydrolyze the cellulose from Chilean Eucalyptus, maintaining reactive forms.

[1]  Johann Evelio Bedoya-Cardona Análisis por dinámica molecular de propiedades tensoactivas de lipopéptidos producidos por Bacillus spp. para su potencial uso en recuperación mejorada de petróleo , 2020 .

[2]  Alistair W. T. King,et al.  Solvent Welding and Imprinting Cellulose Nanofiber Films Using Ionic Liquids. , 2018, Biomacromolecules.

[3]  W. Gacitúa,et al.  Isolation and Characterization of Cellulose Nanocrystals from Rejected Fibers Originated in the Kraft Pulping Process , 2018, Polymers.

[4]  Xiaomin Liu,et al.  Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects , 2018, Chemical science.

[5]  Alistair W. T. King,et al.  Correlation between Ionic Liquid Cytotoxicity and Liposome-Ionic Liquid Interactions. , 2018, Chemistry.

[6]  Shaopeng Wang,et al.  Preparations, properties, and formation mechanism of novel cellulose hydrogel membrane based on ionic liquid , 2018 .

[7]  Marina Cvjetko Bubalo,et al.  Toxicity mechanisms of ionic liquids , 2017, Arhiv za higijenu rada i toksikologiju.

[8]  A. Bismarck,et al.  Cellulose nanocrystals by acid vapour: towards more effortless isolation of cellulose nanocrystals. , 2017, Faraday discussions.

[9]  N. M. Julkapli,et al.  Understanding the effect of synthesis parameters on the catalytic ionic liquid hydrolysis process of cellulose nanocrystals , 2017, Cellulose.

[10]  J. Tritt-Goc,et al.  Influence of cellulose gel matrix on BMIMCl ionic liquid dynamics and conductivity , 2017, Cellulose.

[11]  N. Yusof,et al.  Dissolution of cellulose in ionic liquid: A review , 2017 .

[12]  Alistair W. T. King,et al.  Experimental and Theoretical Thermodynamic Study of Distillable Ionic Liquid 1,5-Diazabicyclo[4.3.0]non-5-enium Acetate , 2016 .

[13]  Christian Salas,et al.  The Forest Sector in Chile: An Overview and Current Challenges , 2016 .

[14]  Alistair W. T. King,et al.  Effect of Ionic Liquids on Zebrafish (Danio rerio) Viability, Behavior, and Histology; Correlation between Toxicity and Ionic Liquid Aggregation. , 2016, Environmental science & technology.

[15]  Hyungsup Kim,et al.  Physical state of cellulose in BmimCl: dependence of molar mass on viscoelasticity and sol-gel transition. , 2016, Physical chemistry chemical physics : PCCP.

[16]  Hatem Abushammala,et al.  Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. , 2015, Carbohydrate polymers.

[17]  R. Parthasarathi,et al.  Theoretical Insights into the Role of Water in the Dissolution of Cellulose Using IL/Water Mixed Solvent Systems. , 2015, The journal of physical chemistry. B.

[18]  C. Lai,et al.  Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis , 2015 .

[19]  K. Woo,et al.  Characteristics of the Thermal Degradation of Glucose and Maltose Solutions , 2015, Preventive nutrition and food science.

[20]  Jinping Zhou,et al.  Improved Synthesis of Cellulose Carbamates with Minimum Urea Based on an Easy Scale-up Method , 2015 .

[21]  Silvia Morales de la Rosa Hidrólisis ácida de celulosa y biomasa lignocelulósica asistida con líquidos iónicos , 2015 .

[22]  C. Chen,et al.  Depolymerization of cellulose to glucose by oxidation–hydrolysis , 2015 .

[23]  J. Kadokawa,et al.  Fabrication and Characterization of Polysaccharide Ion Gels with Ionic Liquids and Their Further Conversion into Value-Added Sustainable Materials , 2015, Biomolecules.

[24]  M. J. Cocero,et al.  Governing chemistry of cellulose hydrolysis in supercritical water. , 2015, ChemSusChem.

[25]  Alistair W. T. King,et al.  Impact of amphiphilic biomass-dissolving ionic liquids on biological cells and liposomes. , 2015, Environmental science & technology.

[26]  S Gnanakaran,et al.  MARTINI coarse-grained model for crystalline cellulose microfibers. , 2015, The journal of physical chemistry. B.

[27]  Jeremy C. Smith,et al.  Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution , 2014, Cellulose.

[28]  Lina Zhang,et al.  Dissolution of cellulose in aqueous NaOH/urea solution: role of urea , 2014, Cellulose.

[29]  Brooks D. Rabideau,et al.  The role of the cation in the solvation of cellulose by imidazolium-based ionic liquids. , 2014, The journal of physical chemistry. B.

[30]  Richard P. Vlosky,et al.  The global forest sector : changes, practices, and prospects , 2013 .

[31]  H. Segura,et al.  Coarse-grained molecular dynamic simulations of selected thermophysical properties for 1-Butyl-3-methylimidazolium hexafluorophosphate , 2013 .

[32]  Wenchuan Wang,et al.  Cosolvent or antisolvent? A molecular view of the interface between ionic liquids and cellulose upon addition of another molecular solvent. , 2013, The journal of physical chemistry. B.

[33]  V. Chunilall,et al.  Supra-Molecular Structure and Chemical Reactivity of Cellulose I Studied Using CP/MAS 13C-NMR , 2013 .

[34]  A. Morais,et al.  Ionic liquids as a tool for lignocellulosic biomass fractionation , 2013 .

[35]  H. Segura,et al.  Surface Tension of 1-Ethyl-3-methylimidazolium Ethyl Sulfate or 1-Butyl-3-methylimidazolium Hexafluorophosphate with Argon and Carbon Dioxide , 2013 .

[36]  Ying-zhou Lu,et al.  Solubility of Hydrogen Chloride in Three 1-Alkyl-3-methylimidazolium Chloride Ionic Liquids in the Pressure Range (0 to 100) kPa and Temperature Range (298.15 to 363.15) K , 2012 .

[37]  Alistair W. T. King,et al.  Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. , 2012, Biomacromolecules.

[38]  Li Huan,et al.  CURRENT STATUS OF APPLICATIONS OF IONIC LIQUIDS FOR CELLULOSE DISSOLUTION AND MODIFICATIONS: REVIEW , 2012 .

[39]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[40]  T. Heinze,et al.  Ionic Liquids — Promising but Challenging Solvents for Homogeneous Derivatization of Cellulose , 2012, Molecules.

[41]  Mathieu Salanne,et al.  New Coarse-Grained Models of Imidazolium Ionic Liquids for Bulk and Interfacial Molecular Simulations , 2012 .

[42]  R. Rogers,et al.  Ionic liquid processing of cellulose. , 2012, Chemical Society reviews.

[43]  Bin Guo,et al.  Absorption of NO and NO2 in Caprolactam Tetrabutyl Ammonium Halide Ionic Liquids , 2011, Journal of the Air & Waste Management Association.

[44]  R. Sun,et al.  Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction. , 2011, Journal of agricultural and food chemistry.

[45]  Alistair W. T. King,et al.  Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing. , 2011, Angewandte Chemie.

[46]  Zakaria Man,et al.  Preparation of Cellulose Nanocrystals Using an Ionic Liquid , 2011 .

[47]  Héctor Rodríguez,et al.  Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? , 2011, Chemical communications.

[48]  Seema Singh,et al.  Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. , 2010, The journal of physical chemistry. B.

[49]  E. Maginn,et al.  Molecular simulation of ionic liquids: current status and future opportunities , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[50]  Christopher H. Chang,et al.  The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds. , 2009, The journal of physical chemistry. B.

[51]  Dongxue Han,et al.  Preparation of colorless ionic liquids "on water" for spectroscopy. , 2009, Talanta.

[52]  Angus A. Gray-Weale,et al.  Correlations in the Structure and Dynamics of Ionic Liquids , 2009 .

[53]  Carlos Vaca-Garcia,et al.  Influence of water on the dissolution of cellulose in selected ionic liquids , 2009 .

[54]  Antje Potthast,et al.  Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids , 2008 .

[55]  A. Panagiotopoulos,et al.  Simulations of phase transitions and free energies for ionic systems , 2008 .

[56]  T. Heinze,et al.  Interaction of ionic liquids with polysaccharides. 5. Solvents and reaction media for the modification of cellulose , 2008, BioResources.

[57]  Lee-Wei Yang,et al.  Coarse-Grained Models Reveal Functional Dynamics – II. Molecular Dynamics Simulation at the Coarse-Grained Level – Theories and Biological Applications , 2008, Bioinformatics and biology insights.

[58]  Russell DeVane,et al.  Nanoscale organization in room temperature ionic liquids: a coarse grained molecular dynamics simulation study. , 2007, Soft matter.

[59]  L. Gu,et al.  Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. , 2007, Carbohydrate research.

[60]  Youquan Deng,et al.  Environmentally friendly and effective removal of Br− and Cl− impurities in hydrophilic ionic liquids by electrolysis and reaction , 2006 .

[61]  K. R. Seddon,et al.  The distillation and volatility of ionic liquids , 2006, Nature.

[62]  C. Afonso,et al.  Preparation and characterization of new room temperature ionic liquids. , 2002, Chemistry.

[63]  P. M. Rodger,et al.  DL_POLY: Application to molecular simulation , 2002 .

[64]  Robin D. Rogers,et al.  Dissolution of Cellose with Ionic Liquids , 2002 .

[65]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[66]  G J Lye,et al.  Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. , 2000, Biotechnology and bioengineering.

[67]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[68]  M. Méthot,et al.  Erratum to: General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration , 2015, Cellulose.

[69]  M. Méthot,et al.  General procedure for determining cellulose nanocrystal sulfate half-ester content by conductometric titration , 2014, Cellulose.

[70]  Avi Pfeffer,et al.  INFLUENCE OF , 2014 .

[71]  R. Overend,et al.  Mechanism of Dilute Acid Hydrolysis of Cellulose Accounting for its Degradation in the Solid State , 1992 .