Discrete Surface Ricci Flow

This work introduces a unified framework for discrete surface Ricci flow algorithms, including spherical, Euclidean, and hyperbolic Ricci flows, which can design Riemannian metrics on surfaces with arbitrary topologies by user-defined Gaussian curvatures. Furthermore, the target metrics are conformal (angle-preserving) to the original metrics. A Ricci flow conformally deforms the Riemannian metric on a surface according to its induced curvature, such that the curvature evolves like a heat diffusion process. Eventually, the curvature becomes the user defined curvature. Discrete Ricci flow algorithms are based on a variational framework. Given a mesh, all possible metrics form a linear space, and all possible curvatures form a convex polytope. The Ricci energy is defined on the metric space, which reaches its minimum at the desired metric. The Ricci flow is the negative gradient flow of the Ricci energy. Furthermore, the Ricci energy can be optimized using Newton's method more efficiently. Discrete Ricci flow algorithms are rigorous and efficient. Our experimental results demonstrate the efficiency, accuracy and flexibility of the algorithms. They have the potential for a wide range of applications in graphics, geometric modeling, and medical imaging. We demonstrate their practical values by global surface parameterizations.

[1]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[2]  A. Bobenko,et al.  Variational principles for circle patterns and Koebe’s theorem , 2002, math/0203250.

[3]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1: Volume 1 , 1997 .

[4]  Helmut Pottmann Spline Orbifolds Curves and Surfaces with Applications in Cagd 445 , 2007 .

[5]  Feng Luo COMBINATORIAL YAMABE FLOW ON SURFACES , 2003 .

[6]  Feng Luo,et al.  Rigidity of Polyhedral Surfaces , 2006 .

[7]  P. Schröder,et al.  Conformal equivalence of triangle meshes , 2008, SIGGRAPH 2008.

[8]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[9]  Alyn P. Rockwood,et al.  Multiperiodic functions for surface design , 1993, Comput. Aided Geom. Des..

[10]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[11]  Steven H. Weintraub,et al.  Differential Forms: A Complement to Vector Calculus , 1997 .

[12]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[13]  David Glickenstein A maximum principle for combinatorial Yamabe flow , 2002 .

[14]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[15]  Shing-Tung Yau,et al.  Global Conformal Parameterization , 2003, Symposium on Geometry Processing.

[16]  Ren Guo Local rigidity of inversive distance circle packing , 2009, 0903.1401.

[17]  Igor Rivin Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume , 1994 .

[18]  Alyn P. Rockwood,et al.  Topological design of sculptured surfaces , 1992, SIGGRAPH.

[19]  W. Thurston The geometry and topology of 3-manifolds , 1979 .

[20]  Paul M. Thompson,et al.  Genus zero surface conformal mapping and its application to brain surface mapping , 2004, IEEE Transactions on Medical Imaging.

[21]  R. Ho Algebraic Topology , 2022 .

[22]  D. Glickenstein,et al.  Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds , 2009, 0906.1560.

[23]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[24]  Albert Marden,et al.  On Thurston's formulation and proof of Andreev's theorem , 1990 .

[25]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[26]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[27]  W. Thurston The geometry and topology of three-manifolds , 1979 .

[28]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[29]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[30]  G. Perelman Finite extinction time for the solutions to the Ricci flow on certain three-manifolds , 2003, math/0307245.

[31]  Yalin Wang,et al.  Optimal global conformal surface parameterization , 2004, IEEE Visualization 2004.

[32]  B. Rodin,et al.  The convergence of circle packings to the Riemann mapping , 1987 .

[33]  O. Schramm,et al.  On the convergence of circle packings to the Riemann map , 1996 .

[34]  Bruno Lévy,et al.  ABF++: fast and robust angle based flattening , 2005, TOGS.

[35]  B. Chow,et al.  The Ricci flow on surfaces , 2004 .

[36]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[37]  Wei Zeng,et al.  Ricci Flow for 3D Shape Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[38]  Hong Qin,et al.  Topology-driven surface mappings with robust feature alignment , 2005, VIS 05. IEEE Visualization, 2005..

[39]  Feng Luo,et al.  Variational principles for discrete surfaces , 2008 .

[40]  Bennett Chow,et al.  The Ricci flow on the 2-sphere , 1991 .

[41]  Xianfeng Gu,et al.  Computing surface hyperbolic structure and real projective structure , 2006, SPM '06.

[42]  Shing-Tung Yau,et al.  Computing geodesic spectra of surfaces , 2007, Symposium on Solid and Physical Modeling.

[43]  Hong Qin,et al.  Manifold splines with single extraordinary point , 2007, Comput. Aided Des..

[44]  Richard S. Hamilton,et al.  The Ricci flow on surfaces , 1986 .

[45]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[46]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[47]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[48]  G. Perelman Ricci flow with surgery on three-manifolds , 2003, math/0303109.

[49]  John F. Hughes,et al.  Parameterizing N-Holed Tori , 2003, IMA Conference on the Mathematics of Surfaces.

[50]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[51]  Hong Qin,et al.  Manifold splines with single extraordinary point , 2007, Symposium on Solid and Physical Modeling.

[52]  Kenneth Stephenson,et al.  Introduction to Circle Packing: The Theory of Discrete Analytic Functions , 2005 .

[53]  Craig Gotsman,et al.  Discrete one-forms on meshes and applications to 3D mesh parameterization , 2006, Comput. Aided Geom. Des..

[54]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[55]  H. Pottmann,et al.  Spline Orbifolds , 1997 .

[56]  Philip L. Bowers,et al.  Uniformizing Dessins and Belyi Maps Via Circle Packing , 2004 .

[57]  Larry L. Schumaker,et al.  Curves and surfaces with applications in CAGD , 1997 .

[58]  Hugues Hoppe,et al.  Design of tangent vector fields , 2007, SIGGRAPH 2007.

[59]  Hong Qin,et al.  Polycube splines , 2007, Comput. Aided Des..

[60]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[61]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[62]  Boris Springborn A variational principle for weighted Delaunay triangulations and hyperideal polyhedra , 2006, math/0603097.

[63]  David Glickenstein A combinatorial Yamabe flow in three dimensions , 2005 .

[64]  Yves Colin de Verdi Un principe variationnel pour les empilements de cercles , 1991 .

[65]  Peter Schröder,et al.  Discrete Willmore flow , 2005, SIGGRAPH Courses.

[66]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[67]  Gregory Leibon Characterizing the Delaunay decompositions of compact hyperbolic surfaces , 2001, math/0103174.

[68]  Ren Guo,et al.  Rigidity of polyhedral surfaces, II , 2006, math/0612714.

[69]  Hong Qin,et al.  Manifold splines , 2005, SPM '05.