The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation

[1]  Wei Wu,et al.  Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease , 2017, American journal of respiratory and critical care medicine.

[2]  A. Regev,et al.  Scaling single-cell genomics from phenomenology to mechanism , 2017, Nature.

[3]  C. Nassenstein,et al.  The nervous system of airways and its remodeling in inflammatory lung diseases , 2017, Cell and Tissue Research.

[4]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[5]  A. Regev,et al.  Revealing the vectors of cellular identity with single-cell genomics , 2016, Nature Biotechnology.

[6]  Aviv Regev,et al.  A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells , 2016, Cell.

[7]  Cynthia C. Hession,et al.  Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons , 2016, Science.

[8]  Amos Tanay,et al.  The Spectrum and Regulatory Landscape of Intestinal Innate Lymphoid Cells Are Shaped by the Microbiome , 2016, Cell.

[9]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[10]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[11]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[12]  Åsa K. Björklund,et al.  The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing , 2016, Nature Immunology.

[13]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[14]  W. Garrett,et al.  Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut , 2016, Science.

[15]  J. Cross,et al.  Arginase 1 is an innate lymphoid cell-intrinsic metabolic checkpoint controlling type 2 inflammation , 2016, Nature Immunology.

[16]  Jamie M. Verheyden,et al.  Pulmonary neuroendocrine cells function as airway sensors to control lung immune response , 2016, Science.

[17]  R. Locksley,et al.  Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit , 2015, Nature.

[18]  Marco Bruschi,et al.  Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites , 2016, Nature.

[19]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. , 2015, F1000Research.

[20]  Monika S. Kowalczyk,et al.  Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells , 2015, Genome research.

[21]  Rona S. Gertner,et al.  Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity , 2015, Cell.

[22]  D. Postma,et al.  Nuclear Receptor Nur77 Attenuates Airway Inflammation in Mice by Suppressing NF-κB Activity in Lung Epithelial Cells , 2015, The Journal of Immunology.

[23]  Simmie L. Foster,et al.  Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation , 2015, Neuron.

[24]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression data , 2015 .

[25]  M. Colonna,et al.  Transcriptional Programs Define Molecular Characteristics of Innate Lymphoid Cell Classes and Subsets , 2015, Nature Immunology.

[26]  Xi Chen,et al.  IL-25-responsive, lineage-negative KLRG1hi cells are multipotential “inflammatory” type 2 innate lymphoid cells , 2014, Nature Immunology.

[27]  Andrew McKenzie,et al.  Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation , 2014, Science Translational Medicine.

[28]  Yongjian Xu,et al.  Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma. , 2014, American journal of respiratory and critical care medicine.

[29]  M. Gold,et al.  Group 2 Innate Lymphoid Cells Are Critical for the Initiation of Adaptive T Helper 2 Cell-Mediated Allergic Lung Inflammation , 2014, Immunity.

[30]  R. Pierce,et al.  Chemosensory functions for pulmonary neuroendocrine cells. , 2014, American journal of respiratory cell and molecular biology.

[31]  G. Ogg,et al.  A role for IL-25 and IL-33–driven type-2 innate lymphoid cells in atopic dermatitis , 2013, The Journal of experimental medicine.

[32]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[33]  R. Locksley,et al.  Type 2 innate lymphoid cells control eosinophil homeostasis , 2013, Nature.

[34]  R. Medcalf,et al.  Plasminogen-stimulated inflammatory cytokine production by airway smooth muscle cells is regulated by annexin A2. , 2013, American journal of respiratory cell and molecular biology.

[35]  David Artis,et al.  Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus , 2011, Nature Immunology.

[36]  Ya-Jen Chang,et al.  Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity , 2011, Nature Immunology.

[37]  A. McKenzie,et al.  Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity , 2010, Nature.

[38]  関川 宗 Gene-expression profiles in human nasal polyp tissues and identification of genetic susceptibility in aspirin-intolerant asthma , 2010 .

[39]  茂呂 和世 Innate production of T[H]2 cytokines by adipose tissue-associated c-Kit[+]Sca-1[+] lymphoid cells , 2010 .

[40]  Tsutomu Takeuchi,et al.  Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells , 2009, Nature.

[41]  V. Kuchroo,et al.  Th1, Th17, and Th9 Effector Cells Induce Experimental Autoimmune Encephalomyelitis with Different Pathological Phenotypes1 , 2009, The Journal of Immunology.

[42]  D. Postma,et al.  Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction , 2009, Nature Genetics.

[43]  A. Zeileis,et al.  Regression Models for Count Data in R , 2008 .

[44]  G. Hansen,et al.  Direct evidence for a critical role of CD30 in the development of allergic asthma. , 2006, The Journal of allergy and clinical immunology.

[45]  E. El-hadidi,et al.  Soluble CD30 serum levels in atopic dermatitis and bronchial asthma and its relationship with disease severity in pediatric age , 2006, Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology.

[46]  A. Yoshimura,et al.  The neuropeptide neuromedin U activates eosinophils and is involved in allergen-induced eosinophilia. , 2006, American journal of physiology. Lung cellular and molecular physiology.

[47]  N. Shankley,et al.  Species‐dependent smooth muscle contraction to Neuromedin U and determination of the receptor subtypes mediating contraction using NMU1 receptor knockout mice , 2006, British journal of pharmacology.

[48]  Y. Ohya,et al.  Analysis of Gene Expressions of T Cells from Children with Acute Exacerbations of Asthma , 2004, International Archives of Allergy and Immunology.

[49]  F. Monsma,et al.  Identification of a Novel Neuromedin U Receptor Subtype Expressed in the Central Nervous System* , 2000, The Journal of Biological Chemistry.

[50]  F. Monsma,et al.  Identification of a human gastrointestinal tract and immune system receptor for the peptide neuromedin U. , 2000, Molecular pharmacology.

[51]  J. Chambers,et al.  Neuromedin U Is a Potent Agonist at the Orphan G Protein-coupled Receptor FM3* , 2000, The Journal of Biological Chemistry.