Benzoylated and Benzylated Cyclodextrins: A New Class of Chiral Solvating Agents for Chiral Recognition of 3,5‐Dinitrophenyl Derivatives by 1H‐NMR Spectroscopy

[1]  P. Salvadori,et al.  An Easy Synthetic Route to Hexakis(6-O-benzoyl)-α-cyclodextrin , 1998 .

[2]  P. Salvadori,et al.  Permethylated Cyclodextrins as Chiral Solvating Agents for the Determination of the Enantiomeric Composition of Apolar Substrates by NMR. , 1998 .

[3]  P. Salvadori,et al.  A New Stereochemical Model from NMR for Benzoylated Cyclodextrins, Promising New Chiral Solvating Agents for the Chiral Analysis of 3,5-Dinitrophenyl Derivatives , 1997 .

[4]  S. Lincoln,et al.  Chiral discrimination by modified cyclodextrins , 1997 .

[5]  J. Narikawa,et al.  Asymmetric Transformation of Phenylglyoxal into Mandelic Acid Catalyzed by Cyclodextrin-Based Glyoxalase Models , 1996 .

[6]  Jean-Marie Lehn,et al.  Comprehensive Supramolecular Chemistry , 1996 .

[7]  O. S. Tee,et al.  Spectator catalysis in the cleavage of p-nitrophenyl acetate and p-nitrophenyl hexanoate by "hydroxypropyl-β-cyclodextrin" , 1996 .

[8]  P. Salvadori,et al.  NMR Chiral Analysis of Aromatic Hydrocarbons by Using Permethylated β-Cyclodextrin as Chiral Solvating Agent , 1996 .

[9]  A. Krishnaswami,et al.  Chiral interactions of the fluoroether anesthetics desflurane, isoflurane, enflurane, and analogues with modified cyclodextrins studied by capillary gas chromatography and nuclear magnetic resonance spectroscopy: A simple method for column-suitability screening , 1996 .

[10]  P. Salvadori,et al.  Different NMR approaches to the chiral analysis of trisubstituted allenes devoid of polar functional groups and aromatic hydrocarbons. , 1996, Enantiomer.

[11]  A. Mortreux,et al.  A further breakthrough in biphasic, rhodium-catalyzed hydroformylation: the use of Per(2,6-di-O-methyl)-β-cyclodextrin as inverse phase transfer catalyst , 1995 .

[12]  A. Mortreux,et al.  Molecular Recognition between Chemically Modified β‐Cyclodextrin and Dec‐1‐ene: New Prospects for Biphasic Hydroformylation of Water‐Insoluble Olefins , 1995 .

[13]  Keiko Yamamoto,et al.  Inclusion-Enhanced Optical Yield and E/Z Ratio in Enantiodifferentiating Photoisomerization of Cyclooctene Included and Sensitized by .beta.-Cyclodextrin Monobenzoate , 1995 .

[14]  Eric Monflier,et al.  Molekulare Erkennung zwischen chemisch modifiziertem β‐Cyclodextrin und 1‐Decen: Zweiphasen‐Hydroformylierung von wasserunlöslichen Olefinen , 1995 .

[15]  F. Furia,et al.  Supramolecular catalysis: enantioselective oxidation of thioanisole in water by hydrogen peroxide catalyzed by Mo(VI) in the presence of .beta.-cyclodextrin-based ligands , 1995 .

[16]  P. Salvadori,et al.  Permethylated .beta.-Cyclodextrin as Chiral Solvating Agent for the NMR Assignment of the Absolute Configuration of Chiral Trisubstituted Allenes , 1995 .

[17]  G. Wenz Cyclodextrins as Building Blocks for Supramolecular Structures and Functional Units , 1994 .

[18]  E. Francotte Contribution of Preparative Chromatographic Resolution to the Investigation of Chiral Phenomena , 1994 .

[19]  Gerhard Wenz Cyclodextrine als Bausteine supramolekularer Strukturen und Funktionseinheiten , 1994 .

[20]  P. Salvadori,et al.  Direct Determination of the Enantiomeric Purity of Chiral Trisubstituted Allenes by Using Permethylated Cyclodextrin as a Chiral Solvating Agent , 1994 .

[21]  K. Altria,et al.  Enantioselective separations using capillary electrophoresis , 1994 .

[22]  Keiko Takahashi,et al.  Enantioface Differentiating Reduction of Keto Acid in the Presence of 6-Deoxy-6-amino-β-cyclodextrin with NaBH4 in Aqueous Media , 1992 .

[23]  William C. Purdy,et al.  Cyclodextrins and Their Applications in Analytical Chemistry , 1992 .

[24]  K. Maher,et al.  Chiral separations by high-performance liquid chromatography , 1992 .

[25]  W. König,et al.  Cyclodextrin Derivatives as Chiral Selectors—Investigation of the Interaction with (R,S)‐Methyl‐2‐chloropropionate by Enantioselective Gas Chromatography, NMR Spectroscopy, and Molecular Dynamics Simulation , 1992 .

[26]  W. König,et al.  Cyclodextrinderivate als chirale Selektoren — Untersuchung der Wechselwirkung mit (R,S)‐Methyl‐2‐chlorpropionat durch enantio‐selektive Gaschromatographie, NMR‐Spektroskopie und Moleküldynamiksimulation , 1992 .

[27]  K. Lipkowitz,et al.  Enantioselective binding of tryptophan by .alpha.-cyclodextrin , 1992 .

[28]  P. Ventura,et al.  Application of γ‐cyclodextrin to enantiomeric purity determination of a new 2‐amino‐tetralin derivative by 1H‐NMR spectroscopy , 1992 .

[29]  D. Parker NMR Determination of Enantiomeric Purity , 1991 .

[30]  Susan E. Brown,et al.  Chiral molecular recognition: a 19F nuclear magnetic resonance study of the diastereoisomer inclusion complexes formed between fluorinated amino acid derivatives and α-cyclodextrin in aqueous solution , 1991 .

[31]  H. Nowotny,et al.  Gaschromatographische Enantiomerentrennung an Cyclodextrinderivaten , 1990 .

[32]  H. Nowotny,et al.  Gas Chromatographic Separation of Enantiomers on Cyclodextrin Derivatives , 1990 .

[33]  S. Lincoln,et al.  The inclusion of the enantiomers of N-trifluoroacetyl-4-fluorophenylalanine and N-trifluoroacetylphenylalanine by cyclomaltohexaose: A 2H- and 19F-N.M.R. study , 1989 .

[34]  A. Casy,et al.  Application of cyclodextrins to chiral analysis by 1H NMR spectroscopy , 1988 .

[35]  D. Greatbanks,et al.  Cyclodextrins as chiral complexing agents in water, and their application to optical purity measurements , 1987 .

[36]  R. Bartsch,et al.  Synthesis of chemically modified cyclodextrins , 1983 .

[37]  John D. Roberts,et al.  Chiral recognition by nitrogen-15 NMR spectroscopy. 8-Benzyl-5,6,7,8-tetrahydroquinoline , 1980 .

[38]  J. Lehn,et al.  Cyclodextrin chemistry. Selective modification of all primary hydroxyl groups of α- and β-cyclodextrins , 1978 .