Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics

We have detected trace amounts of molecules of antibiotics (kanamycin sulfate) dispersed on metasurfaces with terahertz (THz) spectroscopy. Utilizing the extraordinary optical transmission resonance of an array of square-shaped slits on a silicon substrate at ~0.3 THz, we were able to monitor varying concentrations of kanamycin sulfate as low as ~100 picogram/L. In contrast, the lowest detectable concentration of kanamycin sulfate on silicon without any metallic structure was ~1 gram/L. This dramatic ~1010 times enhancement of sensitivity is due to the near-field enhancement of THz electric fields by the metamaterial structure. This result thus demonstrates the power and usefulness of metamaterial-assisted THz spectroscopy in trace molecular detection for biological and chemical sensing as well as for food product quality and safety inspection and control.

[1]  B. Fischer,et al.  Chemical sensing and imaging with pulsed terahertz radiation , 2010, Analytical and bioanalytical chemistry.

[2]  Xi-Cheng Zhang,et al.  Terahertz biosensing technology: frontiers and progress. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[4]  Anastasios D. Koulouklidis,et al.  Detection of Harmful Residues in Honey Using Terahertz Time-Domain Spectroscopy , 2013, Applied spectroscopy.

[5]  Sun-Goo Lee,et al.  Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides. , 2011, Optics express.

[6]  C. Gu,et al.  Self-referenced sensing based on terahertz metamaterial for aqueous solutions , 2013 .

[7]  Marco Rahm,et al.  Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range , 2012, 1203.4527.

[8]  Ta-Jen Yen,et al.  A multi-functional plasmonic biosensor. , 2010, Optics express.

[9]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[10]  Michael Nagel,et al.  Integrated planar terahertz resonators for femtomolar sensitivity label-free detection of DNA hybridization. , 2002, Applied optics.

[11]  Tao Chen,et al.  Metamaterials Application in Sensing , 2012, Sensors.

[12]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[13]  G. Park,et al.  Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit , 2009 .

[14]  S. J. Park,et al.  Detection of microorganisms using terahertz metamaterials , 2014, Scientific Reports.

[15]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[16]  T. Pellinen,et al.  Detection of traces of tetracyclines from fish with a bioluminescent sensor strain incorporating bacterial luciferase reporter genes. , 2002, Journal of agricultural and food chemistry.

[17]  Patrick Butaye,et al.  Differences in Antibiotic Resistance Patterns ofEnterococcus faecalis and Enterococcus faeciumStrains Isolated from Farm and Pet Animals , 2001, Antimicrobial Agents and Chemotherapy.

[18]  F Rotermund,et al.  Terahertz near-field enhancement in narrow rectangular apertures on metal film. , 2009, Optics express.

[19]  G. Plopper,et al.  Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy. , 2007, Biosensors & bioelectronics.

[20]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[21]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[22]  E. Heilweil,et al.  Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz , 2000 .

[23]  Yuegang Zuo,et al.  Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography , 2007 .

[24]  Christian Debus,et al.  Frequency selective surfaces for high sensitivity terahertz sensing , 2007, 2104.05462.

[25]  I. Smolyaninov,et al.  Magnifying Superlens in the Visible Frequency Range , 2006, Science.

[26]  Albert Redo-Sanchez,et al.  Assessment of terahertz spectroscopy to detect antibiotic residues in food and feed matrices. , 2011, The Analyst.

[27]  Erika Rodriguez,et al.  An overview of sample preparation procedures for LC-MS multiclass antibiotic determination in environmental and food samples , 2009, Analytical and bioanalytical chemistry.

[28]  N. Kondo,et al.  Highly Sensitive Metal Mesh Sensors , 2011 .

[29]  David L. Kaplan,et al.  Metamaterials on Paper as a Sensing Platform , 2011, Advanced materials.

[30]  Namkyoo Park,et al.  Colossal absorption of molecules inside single terahertz nanoantennas. , 2013, Nano letters.

[31]  Yuichi Ogawa,et al.  Highly Sensitive Terahertz Sensing of Glycerol-Water Mixtures with Metamaterials , 2014 .

[32]  Rimo Xi,et al.  Preparation of anti-pefloxacin antibody and development of an indirect competitive enzyme-linked immunosorbent assay for detection of pefloxacin residue in chicken liver. , 2009, Journal of agricultural and food chemistry.

[33]  Joseph S. Melinger,et al.  Guided-wave terahertz spectroscopy of molecular solids [Invited] , 2009 .

[34]  Qianfan Xu,et al.  High-contrast terahertz modulator based on extraordinary transmission through a ring aperture. , 2011, Optics express.

[35]  Derek Abbott,et al.  Label-free bioaffinity detection using terahertz technology. , 2002, Physics in medicine and biology.

[36]  Hu Tao,et al.  Planar wallpaper group metamaterials for novel terahertz applications. , 2008, Optics express.

[37]  H. Kurz,et al.  A functionalized THz sensor for marker-free DNA analysis. , 2003, Physics in medicine and biology.

[38]  B. Fischer,et al.  Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy , 2002, Physics in medicine and biology.

[39]  X-C Zhang,et al.  Label-free amplified bioaffinity detection using terahertz wave technology. , 2004, Biosensors & bioelectronics.

[40]  C. Chou,et al.  Improved nonaqueous capillary electrophoresis for tetracyclines at subparts per billion level , 2012, Electrophoresis.

[41]  Willem Haasnoot,et al.  Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor. , 2009, Analytical chemistry.

[42]  B. Gelmont,et al.  THz-Spectroscopy of Biological Molecules , 2003, Journal of biological physics.

[43]  Ángel Maquieira,et al.  Fast screening methods to detect antibiotic residues in food samples , 2010 .

[44]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.