A Multigrid Approach for Fast Geodesic Active Contours

The geodesic active contour is a recent geometric approach for image segmentation, which is motivated by previous snake and geometric models. Segmentation in this model is performed by a dynamic curve which minimizes several internal and external forces. These forces smooth the curve and attract it to the boundaries of objects. The conventional framework for computing geodesic active contours is the level-set method, where the evolving contour is represented as a levelset of a surface. This gives a stable solution, which naturally handles segmentation of several objects in one image. To overcome the relatively high computational requirements of this approach, an implicit formulation is proposed, which reduces the required number of timesteps drastically. An e‐cient adaptive multigrid algorithm is developed and implemented for the solution of the resulting nonlinear system.

[1]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[2]  Ron Kimmel,et al.  An Algebraic Multigrid Approach for Image Analysis , 2002, SIAM J. Sci. Comput..

[3]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[4]  Roman Goldenberg,et al.  Fast Geodesic Active Contours , 1999, Scale-Space.

[5]  Stefan Henn,et al.  A Multigrid Approach for Minimizing a Nonlinear Functional for Digital Image Matching , 2000, Computing.

[6]  Ronen Basri,et al.  Fast multiscale image segmentation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[7]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[8]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[9]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[10]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[11]  Scott T. Acton,et al.  Multigrid anisotropic diffusion , 1998, IEEE Trans. Image Process..

[12]  Raymond H. Chan,et al.  Multigrid for differential-convolution problems arising in image processing , 1997 .

[13]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[14]  Michael Unser,et al.  Multigrid adaptive image processing , 1995, Proceedings., International Conference on Image Processing.

[15]  R. Kimmel,et al.  Geodesic Active Contours , 1995, Proceedings of IEEE International Conference on Computer Vision.

[16]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[17]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[19]  Guillermo Sapiro,et al.  Implementing continuous-scale morphology via curve evolution , 1993, Pattern Recognit..

[20]  Baba C. Vemuri,et al.  Topology-independent shape modeling scheme , 1993, Optics & Photonics.

[21]  Edward R. Dougherty,et al.  An introduction to morphological image processing , 1992 .

[22]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[23]  Stephen F. McCormick,et al.  Multilevel adaptive methods for partial differential equations , 1989, Frontiers in applied mathematics.

[24]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[25]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[26]  Demetri Terzopoulos,et al.  Image Analysis Using Multigrid Relaxation Methods , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[28]  A. Brandt Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems , 1973 .

[29]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .