Cybernetic Modeling for Bioreaction Engineering

In research on bacteria metabolism we have indeed much the same position as an observer trying to gain an idea of the life of a household by careful scrutiny of the persons and material arriving or leaving the house; we keep accurate records of the foods and commodities left at the door and patiently examine the contents of the dust-bin and endeavour to deduce from such data the events occurring within the closed doors. (Marjorie Stephenson, 1930)

[1]  Timothy D. Scheibe,et al.  Regulation-Structured Dynamic Metabolic Model Provides a Potential Mechanism for Delayed Enzyme Response in Denitrification Process , 2017, Front. Microbiol..

[2]  S Yoo,et al.  Cybernetic model for synthesis of poly‐β‐hydroxybutyric acid in Alcaligenes eutrophus , 1994, Biotechnology and bioengineering.

[3]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[4]  T C Stadtman,et al.  Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. , 1990, The Journal of biological chemistry.

[5]  I. Birol,et al.  Metabolic control analysis under uncertainty: framework development and case studies. , 2004, Biophysical journal.

[6]  Doraiswami Ramkrishna,et al.  Prediction of metabolic function from limited data: Lumped hybrid cybernetic modeling (L‐HCM) , 2010, Biotechnology and bioengineering.

[7]  J. Bailey,et al.  Toward a science of metabolic engineering , 1991, Science.

[8]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[9]  Robert Urbanczik,et al.  Functional stoichiometric analysis of metabolic networks , 2005, Bioinform..

[10]  P. Senior,et al.  Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: studies with the continuous-culture technique , 1975, Journal of Bacteriology.

[11]  A. Wolfe,et al.  Effects of mutations in acetate metabolism on high-cell-density growth of Escherichia coli , 2000, Journal of Industrial Microbiology and Biotechnology.

[12]  R. Carlson,et al.  Fundamental Escherichia coli biochemical pathways for biomass and energy production: Identification of reactions , 2004, Biotechnology and bioengineering.

[13]  H. Kitano Towards a theory of biological robustness , 2007, Molecular systems biology.

[14]  F. Srienc,et al.  Minimal Escherichia coli Cell for the Most Efficient Production of Ethanol from Hexoses and Pentoses , 2008, Applied and Environmental Microbiology.

[15]  Xueyang Feng,et al.  Invariability of central metabolic flux distribution in Shewanella oneidensis MR‐1 under environmental or genetic perturbations , 2009, Biotechnology progress.

[16]  N. Price,et al.  Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis , 2010, Proceedings of the National Academy of Sciences.

[17]  Doraiswami Ramkrishna,et al.  DYNAMICS OF MICROBIAL PROPAGATION MODELS CONSIDERING ENDOGENOUS METABOLISM , 1966 .

[18]  K. Ülgen,et al.  Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks , 2004, Biotechnology and bioengineering.

[19]  S Pavlou,et al.  Growth of microbial populations in nonminimal media: Some considerations for modeling , 1989, Biotechnology and bioengineering.

[20]  D. Ramkrishna,et al.  Modeling metabolic systems: the need for dynamics , 2013 .

[21]  K. Ulgen,et al.  Flux analysis of recombinant Saccharomyces cerevisiae YPB-G utilizing starch for optimal ethanol production , 2004 .

[22]  Jamey D. Young,et al.  Integrating cybernetic modeling with pathway analysis provides a dynamic, systems‐level description of metabolic control , 2008, Biotechnology and bioengineering.

[23]  F. G. Bader,et al.  Analysis of double‐substrate limited growth , 1978, Biotechnology and bioengineering.

[24]  B. Palsson,et al.  Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. , 2000, Journal of theoretical biology.

[25]  Eugénio C. Ferreira,et al.  Selection of Elementary Modes for Bioprocess Control , 2010 .

[26]  Jayant M Modak,et al.  Cybernetic modeling of adaptive prediction of environmental changes by microorganisms. , 2014, Mathematical biosciences.

[27]  J. A. Scott,et al.  Defined coimmobilization of mixed microorganism cultures , 1995 .

[28]  B. Palsson,et al.  Transcriptional regulation in constraints-based metabolic models of Escherichia coli Covert , 2002 .

[29]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[30]  E. Ruppin,et al.  Regulatory on/off minimization of metabolic flux changes after genetic perturbations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Eugénio C. Ferreira,et al.  Random sampling of elementary flux modes in large-scale metabolic networks , 2012, Bioinform..

[32]  C. Maranas,et al.  A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains , 2016, Nature Communications.

[33]  J E Bailey,et al.  Mathematical Modeling and Analysis in Biochemical Engineering: Past Accomplishments and Future Opportunities , 1998, Biotechnology progress.

[34]  Kazuyuki Shimizu,et al.  Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. , 2005, Metabolic engineering.

[35]  U. Sauer,et al.  Metabolic Flux Ratio Analysis of Genetic and Environmental Modulations of Escherichia coli Central Carbon Metabolism , 1999, Journal of bacteriology.

[36]  Vincent D. Blondel,et al.  Fast computation of minimal elementary decompositions of metabolic flux vectors , 2011, Autom..

[37]  Steffen Klamt,et al.  Structural and functional analysis of cellular networks with CellNetAnalyzer , 2007, BMC Systems Biology.

[38]  S. Schuster,et al.  Metabolic network structure determines key aspects of functionality and regulation , 2002, Nature.

[39]  Jamey D. Young Learning from the Steersman: A Natural History of Cybernetic Models , 2015 .

[40]  Ali R. Zomorrodi,et al.  A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. , 2014, Metabolic engineering.

[41]  M M Ataai,et al.  Double-substrate-limited growth of escherichia coli. , 1984, Biotechnology and bioengineering.

[42]  C. Chassagnole,et al.  Dynamic modeling of the central carbon metabolism of Escherichia coli. , 2002, Biotechnology and bioengineering.

[44]  Y T Yang,et al.  The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli. , 2001, Metabolic engineering.

[45]  Yee Wen Choon,et al.  A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains , 2013, Bioprocess and Biosystems Engineering.

[46]  M A Aon,et al.  Fluxes of carbon, phosphorylation, and redox intermediates during growth of saccharomyces cerevisiae on different carbon sources , 1995, Biotechnology and bioengineering.

[47]  C. Verduyn Physiology of yeasts in relation to biomass yields , 1991, Antonie van Leeuwenhoek.

[48]  R. E. Wilson,et al.  Fermentation Process Control, Population Dynamics of a Continuous Propagator for Microorganisms , 1954 .

[49]  Doraiswami Ramkrishna,et al.  On modeling of bioreactors for control , 2001 .

[50]  Desmond S. Lun,et al.  Interpreting Expression Data with Metabolic Flux Models: Predicting Mycobacterium tuberculosis Mycolic Acid Production , 2009, PLoS Comput. Biol..

[51]  F. Srienc,et al.  Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism , 2009, Applied Microbiology and Biotechnology.

[52]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[53]  O. Bilous,et al.  Chemical reactor stability and sensitivity , 1955 .

[54]  Judith B. Zaugg,et al.  Bacterial adaptation through distributed sensing of metabolic fluxes , 2010, Molecular systems biology.

[55]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[56]  Pei Yee Ho,et al.  Effect of ldhA gene deletion on the metabolism of Escherichia coli based on gene expression, enzyme activities, intracellular metabolite concentrations, and metabolic flux distribution , 2005 .

[57]  G. T. Tsao,et al.  A cybernetic view of microbial growth: Modeling of cells as optimal strategists , 1985, Biotechnology and bioengineering.

[58]  D. Tempest,et al.  The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture , 1975, Archives of Microbiology.

[59]  G. Bennett,et al.  Enhancement of lactate and succinate formation in adhE or pta‐ackA mutants of NADH dehydrogenase‐deficient Escherichia coli , 2005, Journal of applied microbiology.

[60]  Ka-Yiu San,et al.  Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. , 2002, Metabolic engineering.

[61]  Ryo Tsuboi,et al.  Complementary elementary modes for fast and efficient analysis of metabolic networks , 2014 .

[62]  M L Alexander,et al.  Cybernetic modeling of iron‐limited growth and siderophore production , 1991, Biotechnology and bioengineering.

[63]  Thomas Egli,et al.  The Ecological and Physiological Significance of the Growth of Heterotrophic Microorganisms with Mixtures of Substrates , 1995 .

[64]  Merja Penttilä,et al.  Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. , 2003, Metabolic engineering.

[65]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[66]  W. D. Holtzclaw,et al.  Degradative acetolactate synthase of Bacillus subtilis: purification and properties , 1975, Journal of bacteriology.

[67]  Allen G. Marr,et al.  THE MAINTENANCE REQUIREMENT OF ESCHERICHIA COLI , 1963 .

[68]  Severino S. Pandiella,et al.  Modelling and validation of Lactobacillus plantarum fermentations in cereal-based media with different sugar concentrations and buffering capacities , 2009 .

[69]  Lake-Ee Quek,et al.  A depth-first search algorithm to compute elementary flux modes by linear programming , 2014, BMC Systems Biology.

[70]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[71]  R. Carlson,et al.  Design, construction and performance of the most efficient biomass producing E. coli bacterium. , 2006, Metabolic engineering.

[72]  Peter Ruhdal Jensen,et al.  Estimating biological elementary flux modes that decompose a flux distribution by the minimal branching property , 2014, Bioinform..

[73]  M. Symonds,et al.  A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion , 2010, Behavioral Ecology and Sociobiology.

[74]  Thilo Gross,et al.  Structural kinetic modeling of metabolic networks , 2006, Proceedings of the National Academy of Sciences.

[75]  J. Nielsen,et al.  Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. , 1997, Microbiology.

[76]  D. Fell,et al.  A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks , 2000, Nature Biotechnology.

[77]  D. Ramkrishna,et al.  Metabolic Engineering from a Cybernetic Perspective. 1. Theoretical Preliminaries , 1999, Biotechnology progress.

[78]  Ka-Yiu San,et al.  Efficient Succinic Acid Production from Glucose through Overexpression of Pyruvate Carboxylase in an Escherichia coli Alcohol Dehydrogenase and Lactate Dehydrogenase Mutant , 2008, Biotechnology progress.

[79]  Y. Pilpel,et al.  Adaptive prediction of environmental changes by microorganisms , 2009, Nature.

[80]  Jason A. Papin,et al.  Metabolic pathways in the post-genome era. , 2003, Trends in biochemical sciences.

[81]  J. Fredrickson,et al.  Integrating Ecological and Engineering Concepts of Resilience in Microbial Communities , 2015, Front. Microbiol..

[82]  Alexander Bockmayr,et al.  Analysis of Metabolic Subnetworks by Flux Cone Projection , 2011, Algorithms for Molecular Biology.

[83]  Doraiswami Ramkrishna,et al.  Modeling of Bacterial Growth under Multiply‐Limiting Conditions. Experiments under Carbon‐ or/and Nitrogen‐Limiting Conditions , 1994 .

[84]  H. Sahm,et al.  Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. , 1976, European journal of biochemistry.

[85]  Jacek Nowak,et al.  Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers , 2004, Biotechnology Letters.

[86]  D. Herbert,et al.  The continuous culture of bacteria; a theoretical and experimental study. , 1956, Journal of general microbiology.

[87]  J. Monod The Growth of Bacterial Cultures , 1949 .

[88]  E. Mayr Cause and Effect in Biology: Kinds of causes, predictability, and teleology are viewed by a practicing biologist , 1961 .

[89]  Doraiswami Ramkrishna,et al.  Prediction of dynamic behavior of mutant strains from limited wild-type data. , 2012, Metabolic engineering.

[90]  B. Tyler Regulation of the assimilation of nitrogen compounds. , 1978, Annual review of biochemistry.

[91]  Hiroyuki Kurata,et al.  BMC Systems Biology BioMed Central Methodology article , 2007 .

[92]  Doraiswami Ramkrishna,et al.  Exacting predictions by cybernetic model confirmed experimentally: Steady state multiplicity in the chemostat , 2012, Biotechnology progress.

[93]  J E Bailey,et al.  Genetically structured models forlac promoter–operator function in the Escherichia coli chromosome and in multicopy plasmids: Lac operator function , 1984, Biotechnology and bioengineering.

[94]  H. M. Tsuchiya,et al.  Dynamics of Microbial Cell Populations , 1966 .

[95]  D. Ramkrishna,et al.  Reduction of a set of elementary modes using yield analysis , 2009, Biotechnology and bioengineering.

[96]  S. Pirt Maintenance energy: a general model for energy-limited and energy-sufficient growth , 1982, Archives of Microbiology.

[97]  George N. Bennett,et al.  Metabolic Flux Analysis ofEscherichia coliDeficient in the Acetate Production Pathway and Expressing theBacillus subtilisAcetolactate Synthase , 1999 .

[98]  Jim K. Fredrickson,et al.  Constraint-Based Model of Shewanella oneidensis MR-1 Metabolism: A Tool for Data Analysis and Hypothesis Generation , 2010, PLoS Comput. Biol..

[99]  Doraiswami Ramkrishna,et al.  Dynamics of microbial propagation: Models considering inhibitors and variable cell composition , 1967 .

[100]  Ping Ji,et al.  Decomposing flux distributions into elementary flux modes in genome-scale metabolic networks , 2011, Bioinform..

[101]  D. Ramkrishna,et al.  A hybrid model of anaerobic E. coli GJT001: Combination of elementary flux modes and cybernetic variables , 2008, Biotechnology progress.

[102]  Y. Schneider,et al.  Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells , 2006, Bioprocess and biosystems engineering.

[103]  H J Cruz,et al.  Metabolic shifts by nutrient manipulation in continuous cultures of BHK cells. , 1999, Biotechnology and bioengineering.

[104]  Steven P. Asprey,et al.  Toward Global Parametric Estimability of a Large-Scale Kinetic Single-Cell Model for Mammalian Cell Cultures , 2005 .

[105]  S. Pirt The maintenance energy of bacteria in growing cultures , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[106]  W. A. Scheffers,et al.  Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. , 1990, Journal of general microbiology.

[107]  Christoph Kaleta,et al.  Computing Elementary Flux Modes in Genome-scale Metabolic Networks , 2009, GCB.

[108]  S. Panke,et al.  Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data , 2006, Molecular systems biology.

[109]  Doraiswami Ramkrishna,et al.  When is the Quasi-Steady-State Approximation Admissible in Metabolic Modeling? When Admissible, What Models are Desirable? , 2009 .

[110]  Manuel Cánovas,et al.  An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node in Escherichia coli , 2009, Microbial cell factories.

[111]  Wim Soetaert,et al.  Minimizing acetate formation in E. coli fermentations , 2007, Journal of Industrial Microbiology & Biotechnology.

[112]  Christian Jungreuthmayer,et al.  tEFMA: computing thermodynamically feasible elementary flux modes in metabolic networks , 2015, Bioinform..

[113]  J. Stelling,et al.  Combinatorial Complexity of Pathway Analysis in Metabolic Networks , 2004, Molecular Biology Reports.

[115]  D. Ramkrishna,et al.  Complex growth dynamics in batch cultures: Experiments and cybernetic models , 1991, Biotechnology and bioengineering.

[116]  Doraiswami Ramkrishna,et al.  Theoretical investigations of dynamic behavior of isothermal continuous stirred tank biological reactors , 1982 .

[117]  D. Kompala,et al.  A structured kinetic modeling framework for the dynamics of hybridoma growth and monoclonal antibody production in continuous suspension cultures , 1989, Biotechnology and bioengineering.

[118]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[119]  Stefan Schuster,et al.  Systems biology Metatool 5.0: fast and flexible elementary modes analysis , 2006 .

[120]  D. Kompala,et al.  Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures. , 1999, Journal of biotechnology.

[121]  G. Bastin,et al.  FROM METABOLIC NETWORKS TO MINIMAL DYNAMIC BIOREACTION MODELS , 2007 .

[122]  G. T. Tsao,et al.  Investigation of bacterial growth on mixed substrates: Experimental evaluation of cybernetic models , 1986, Biotechnology and bioengineering.

[123]  S. Schuster,et al.  Analysis of structural robustness of metabolic networks. , 2004, Systems biology.

[124]  B. C. Baltzis,et al.  Limitation of growth rate by two complementary nutrients: Some elementary but neglected considerations , 1988, Biotechnology and bioengineering.

[125]  G. Bennett,et al.  Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli , 2005, Journal of Industrial Microbiology and Biotechnology.

[126]  D. Ramkrishna,et al.  Metabolic engineering from a cybernetic perspective: aspartate family of amino acids. , 1999, Metabolic engineering.

[127]  Francisco J. Planes,et al.  TreeEFM: calculating elementary flux modes using linear optimization in a tree-based algorithm , 2015, Bioinform..

[128]  D. Ramkrishna A Cybernetic Perspective of Microbial Growth , 1983 .

[129]  S. Schuster,et al.  Structural robustness of metabolic networks with respect to multiple knockouts. , 2008, Journal of theoretical biology.

[130]  J. Varner,et al.  Metabolic Engineering from a Cybernetic Perspective. 2. Qualitative Investigation of Nodal Architechtures and Their Response to Genetic Perturbation , 1999, Biotechnology progress.

[131]  Steffen Klamt,et al.  CASOP: a computational approach for strain optimization aiming at high productivity. , 2010, Journal of biotechnology.

[132]  A. Gambhir,et al.  Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. , 2000, Biotechnology and bioengineering.

[133]  William D. Penny,et al.  Comparing Dynamic Causal Models using AIC, BIC and Free Energy , 2012, NeuroImage.

[134]  Kalyan Gayen,et al.  Analysis of optimal phenotypic space using elementary modes as applied to Corynebacterium glutamicum , 2006, BMC Bioinformatics.

[135]  D. Clark,et al.  Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation , 1989, Journal of bacteriology.

[136]  D. Ramkrishna,et al.  Metabolic regulation in bacterial continuous cultures: I , 1991, Biotechnology and bioengineering.

[137]  A. G. Fredrickson,et al.  Segregated, structured, distributed models and their role in microbial ecology: A case study based on work done on the filter-feeding ciliateTetrahymena pyriformis , 1991, Microbial Ecology.

[138]  Steffen Klamt,et al.  Two approaches for metabolic pathway analysis? , 2003, Trends in biotechnology.

[139]  Pedro A Saa,et al.  Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks. , 2017, Biotechnology advances.

[140]  Varner,et al.  Application of cybernetic models to metabolic engineering: investigation of storage pathways , 1998, Biotechnology and bioengineering.

[141]  Miguel Anxo Murado,et al.  Unstructured mathematical model for biomass, lactic acid and bacteriocin production by lactic acid bacteria in batch fermentation , 2008 .

[142]  D. Ramkrishna,et al.  Cybernetic models based on lumped elementary modes accurately predict strain‐specific metabolic function , 2011, Biotechnology and bioengineering.

[143]  Doraiswami Ramkrishna,et al.  Dynamic modeling of aerobic growth of Shewanella oneidensis. Predicting triauxic growth, flux distributions, and energy requirement for growth. , 2013, Metabolic engineering.

[144]  Kapil G. Gadkar,et al.  Cybernetic Model Predictive Control of a Continuous Bioreactor with Cell Recycle , 2003, Biotechnology progress.

[145]  Jingqi Yuan,et al.  On enhancing productivity of bioethanol with multiple species , 2012, Biotechnology and bioengineering.

[146]  Christian Jungreuthmayer,et al.  regEfmtool: Speeding up elementary flux mode calculation using transcriptional regulatory rules in the form of three-state logic , 2013, Biosyst..

[147]  B. Magasanik Genetic control of nitrogen assimilation in bacteria. , 1982, Annual review of genetics.

[148]  R Ramakrishna,et al.  Cybernetic modeling of growth in mixed, substitutable substrate environments: Preferential and simultaneous utilization. , 1996, Biotechnology and bioengineering.

[149]  Angel Rubio,et al.  Computing the shortest elementary flux modes in genome-scale metabolic networks , 2009, Bioinform..

[150]  Doraiswami Ramkrishna,et al.  Sequential computation of elementary modes and minimal cut sets in genome‐scale metabolic networks using alternate integer linear programming , 2017, Bioinform..

[151]  G. Stephanopoulos CHAPTER 1 – The Essence of Metabolic Engineering , 1998 .

[152]  Georges Bastin,et al.  Dynamic metabolic modelling under the balanced growth condition , 2004 .

[153]  R. Aris Prolegomena to the rational analysis of systems of chemical reactions , 1965 .

[154]  Yinjie J. Tang,et al.  A kinetic model describing Shewanella oneidensis MR‐1 growth, substrate consumption, and product secretion , 2007, Biotechnology and bioengineering.

[155]  Abhijit Anand Namjoshi,et al.  Multiplicity and stability of steady states in continuous bioreactors: dissection of cybernetic models , 2001 .

[156]  D. Tempest,et al.  The chemostat: design and instrumentation. , 1965, Laboratory practice.

[157]  G. T. Tsao,et al.  Cybernetic modeling of microbial growth on multiple substrates , 1984, Biotechnology and bioengineering.

[158]  Nan Xiao,et al.  Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli , 2008, Bioinform..

[159]  Robert Urbanczik,et al.  The geometry of the flux cone of a metabolic network. , 2005, Biophysical journal.

[160]  R. Mahadevan,et al.  Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum , 2004, Biotechnology and bioengineering.

[161]  D. Ramkrishna,et al.  Synergistic Optimal Integration of Continuous and Fed-Batch Reactors for Enhanced Productivity of Lignocellulosic Bioethanol , 2012 .

[162]  M. Riley,et al.  Genomic Analysis of Carbon Source Metabolism of Shewanella oneidensis MR-1: Predictions versus Experiments , 2006, Journal of Bacteriology.

[163]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[164]  C. Wagner Nullspace Approach to Determine the Elementary Modes of Chemical Reaction Systems , 2004 .

[165]  Hyun-Seob Song,et al.  Dynamic Metabolic Modeling of Denitrifying Bacterial Growth: The Cybernetic Approach , 2015 .

[166]  H Shi,et al.  Dynamics and modeling on fermentative production of poly (beta-hydroxybutyric acid) from sugars via lactate by a mixed culture of Lactobacillus delbrueckii and Alcaligenes eutrophus. , 1999, Journal of biotechnology.

[167]  T. Ström On Logarithmic Norms , 1975 .

[168]  A. B. Poore,et al.  On the dynamic behavior of continuous stirred tank reactors , 1974 .

[169]  G Stephanopoulos,et al.  Metabolic flux analysis of hybridoma continuous culture steady state multiplicity. , 1999, Biotechnology and bioengineering.

[170]  Cory P. McDonald,et al.  Using a model selection criterion to identify appropriate complexity in aquatic biogeochemical models , 2010 .

[171]  Bernhard O. Palsson,et al.  BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions , 2010, BMC Bioinformatics.

[172]  Steffen Klamt,et al.  Computation of elementary modes: a unifying framework and the new binary approach , 2004, BMC Bioinformatics.

[173]  Robert Urbanczik,et al.  An improved algorithm for stoichiometric network analysis: theory and applications , 2005, Bioinform..

[174]  Doraiswami Ramkrishna,et al.  Dynamic analysis of the cybernetic model for diauxic growth , 1997 .

[175]  J. Reifman,et al.  Prediction of Metabolic Flux Distribution from Gene Expression Data Based on the Flux Minimization Principle , 2014, PloS one.

[176]  A G Fredrickson,et al.  Formulation of structured growth models. , 2000, Biotechnology and bioengineering.

[177]  D. Ramkrishna,et al.  Systematic development of hybrid cybernetic models: Application to recombinant yeast co‐consuming glucose and xylose , 2009, Biotechnology and bioengineering.

[178]  Tingyue Gu,et al.  KINETIC MODELING OF CELL GROWTH AND PRODUCT FORMATION IN SUBMERGED CULTURE OF RECOMBINANT ASPERGILLUS NIGER , 2008 .

[179]  Kristopher A. Hunt,et al.  Complete enumeration of elementary flux modes through scalable demand-based subnetwork definition , 2014, Bioinform..

[180]  A. Narang,et al.  New patterns of mixed-substrate utilization during batch growth of Escherichia coli K12. , 1997, Biotechnology and bioengineering.

[181]  Jesús Picó,et al.  Which Metabolic Pathways Generate and Characterize the Flux Space? A Comparison among Elementary Modes, Extreme Pathways and Minimal Generators , 2010, Journal of biomedicine & biotechnology.

[182]  Doraiswami Ramkrishna,et al.  Cybernetic Modeling and Regulation of Metabolic Pathways. Growth on Complementary Nutrients , 1994 .

[183]  B. L. Clarke Stoichiometric network analysis , 2008, Cell Biophysics.

[184]  Doraiswami Ramkrishna,et al.  Unveiling steady‐state multiplicity in hybridoma cultures: The cybernetic approach , 2003, Biotechnology and bioengineering.

[185]  S. Schuster,et al.  ON ELEMENTARY FLUX MODES IN BIOCHEMICAL REACTION SYSTEMS AT STEADY STATE , 1994 .

[186]  Jörg Stelling,et al.  Large-scale computation of elementary flux modes with bit pattern trees , 2008, Bioinform..

[187]  F. Doyle,et al.  Dynamic flux balance analysis of diauxic growth in Escherichia coli. , 2002, Biophysical journal.

[188]  Michiel Kleerebezem,et al.  Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. , 2002, Microbiology.

[189]  J. Stelling,et al.  Genome‐scale metabolic networks , 2009, Wiley interdisciplinary reviews. Systems biology and medicine.

[190]  K. Shimizu,et al.  Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under anaerobic and microaerobic conditions , 2008 .

[191]  J. Preiss Chemistry and Metabolism of Intracellular Reserves , 1989 .

[192]  Steffen Klamt,et al.  Minimal cut sets in biochemical reaction networks , 2004, Bioinform..

[193]  O. Bernard,et al.  Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production. , 2015, Current opinion in biotechnology.

[194]  Steffen Klamt,et al.  An application programming interface for CellNetAnalyzer , 2011, Biosyst..

[195]  A. Kienle,et al.  Experimental and theoretical analysis of poly (β-hydroxybutyrate) formation and consumption in Ralstonia eutropha , 2011 .

[196]  Jörg Stelling,et al.  Parallel Extreme Ray and Pathway Computation , 2009, PPAM.

[197]  G. Bennett,et al.  Redistribution of metabolic fluxes in Escherichia coli with fermentative lactate dehydrogenase overexpression and deletion. , 1999, Metabolic engineering.

[198]  S. W. Kim,et al.  Cybernetic modeling of the cephalosporin C fermentation process by Cephalosporium acremonium , 2003, Biotechnology Letters.

[199]  S. Klamt,et al.  Generalized concept of minimal cut sets in biochemical networks. , 2006, Bio Systems.

[200]  G. Sawers,et al.  A glycyl radical solution: oxygen‐dependent interconversion of pyruvate formate‐lyase , 1998, Molecular microbiology.

[201]  Nagasuma R. Chandra,et al.  Flux balance analysis of biological systems: applications and challenges , 2009, Briefings Bioinform..

[203]  B. Palsson,et al.  Characterizing the metabolic phenotype: A phenotype phase plane analysis , 2002, Biotechnology and bioengineering.

[204]  M. A. Henson,et al.  Genome‐scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed‐batch culture , 2007, Biotechnology and bioengineering.

[205]  Doraiswami Ramkrishna,et al.  On the Matching and Proportional Laws of Cybernetic Models , 2007, Biotechnology progress.

[206]  Doraiswami Ramkrishna,et al.  Dynamic models of metabolism: Review of the cybernetic approach , 2012 .

[207]  D. Fell,et al.  Reaction routes in biochemical reaction systems: Algebraic properties, validated calculation procedure and example from nucleotide metabolism , 2002, Journal of mathematical biology.

[208]  Gürkan Sin,et al.  Application of mechanistic models to fermentation and biocatalysis for next-generation processes. , 2010, Trends in biotechnology.