Converting nondeterministic automata and context-free grammars into Parikh equivalent one-way and two-way deterministic automata

We investigate the conversion of one-way nondeterministic finite automata and context-free grammars into Parikh equivalent one-way and two-way deterministic finite automata, from a descriptional complexity point of view. We prove that for each one-way nondeterministic automaton with n states there exist Parikh equivalent one-way and two-way deterministic automata with e^O^(^n^@?^l^n^n^) and p(n) states, respectively, where p(n) is a polynomial. Furthermore, these costs are tight. In contrast, if all the words accepted by the given automaton contain at least two different letters, then a Parikh equivalent one-way deterministic automaton with a polynomial number of states can be found. Concerning context-free grammars, we prove that for each grammar in Chomsky normal form with h variables there exist Parikh equivalent one-way and two-way deterministic automata with 2^O^(^h^^^2^) and 2^O^(^h^) states, respectively. Even these bounds are tight.

[1]  A. R. Meyer,et al.  Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.

[2]  Anthony Widjaja To,et al.  Parikh Images of Regular Languages: Complexity and Applications , 2010, 1002.1464.

[3]  Seymour Ginsburg,et al.  Two Families of Languages Related to ALGOL , 1962, JACM.

[4]  Andreas Malcher,et al.  Descriptional Complexity of Machines with Limited Resources , 2002, J. Univers. Comput. Sci..

[5]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[6]  Jozef Gruska Descriptional Complexity of Context-Free Languages , 1973, MFCS.

[7]  Pierre Ganty,et al.  Parikhʼs theorem: A simple and direct automaton construction , 2010, Inf. Process. Lett..

[8]  A. Kasher Review: Seymour Ginsburg, Edwin H. Spanier, Semigroups, Presburger Formulas, and Languages , 1969 .

[9]  Jeffrey Shallit,et al.  Unary Context-Free Grammars and Pushdown Automata, Descriptional Complexity and Auxiliary Space Lower Bounds , 2002, J. Comput. Syst. Sci..

[10]  A. To Model Checking Infinite-State Systems: Generic and Specific Approaches , 2010 .

[11]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[12]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[13]  Pawel Gawrychowski Chrobak Normal Form Revisited, with Applications , 2011, CIAA.

[14]  Jeffrey Shallit,et al.  A Second Course in Formal Languages and Automata Theory , 2008 .

[15]  Jonathan Goldstine,et al.  A simplified proof of Parikh's theorem , 1977, Discret. Math..

[16]  Luca Aceto,et al.  A Fully Equational Proof of Parikh's Theorem , 2001, RAIRO Theor. Informatics Appl..

[17]  Anthony Widjaja Lin,et al.  Parikh Images of Grammars: Complexity and Applications , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[18]  Asa Kasher Review: Seymour Ginsburg, H. Gordon Rice, Two Families of Languages Related to ALGOL , 1969 .

[19]  FRANK R. MOORE,et al.  On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.

[20]  Carlo Mereghetti,et al.  Complementing Two-Way Finite Automata , 2007, Developments in Language Theory.

[21]  Thomas Schwentick,et al.  On the Complexity of Equational Horn Clauses , 2005, CADE.

[22]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[23]  J. Berstel,et al.  Context-free languages , 1993, SIGA.

[24]  Thiet-Dung Huynh The Complexity of Semilinear Sets , 1982, J. Inf. Process. Cybern..

[25]  Viliam Geffert,et al.  Magic numbers in the state hierarchy of finite automata , 2006, Inf. Comput..

[26]  Javier Esparza Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes , 1995, FCT.

[27]  Giovanni Pighizzini,et al.  Parikh's Theorem and Descriptional Complexity , 2012, SOFSEM.