High-sensitivity heat-capacity measurements on Sr2RuO4 under uniaxial pressure

Significance Research on the unconventional superconductivity of Sr2RuO4 is undergoing a renaissance since recent spin susceptibility measurements ruling out the spin triplet order parameter which had been widely favored for over two decades. With ultrasound, Kerr rotation, and muon spin relaxation data all providing evidence for a two-component order parameter, it is vital that this possibility be investigated thermodynamically by studying the dependence of the heat-capacity anomaly on uniaxial pressure. Here, the relevant experimental results are combined with theoretical analysis that shows how strongly the data constrain theories of the order parameter. In particular, we do not observe any signs of transition splitting of two-order-parameter components. Sr2RuO4 thus offers a unique test bed for theories of unconventional superconductivity. A key question regarding the unconventional superconductivity of Sr2RuO4 remains whether the order parameter is single- or two-component. Under a hypothesis of two-component superconductivity, uniaxial pressure is expected to lift their degeneracy, resulting in a split transition. The most direct and fundamental probe of a split transition is heat capacity. Here, we report measurement of heat capacity of samples subject to large and highly homogeneous uniaxial pressure. We place an upper limit on the heat-capacity signature of any second transition of a few percent of that of the primary superconducting transition. The normalized jump in heat capacity, ΔC/C, grows smoothly as a function of uniaxial pressure, favoring order parameters which are allowed to maximize in the same part of the Brillouin zone as the well-studied van Hove singularity. Thanks to the high precision of our measurements, these findings place stringent constraints on theories of the superconductivity of Sr2RuO4.

[1]  Y. Maeno,et al.  Split superconducting and time-reversal symmetry-breaking transitions in Sr2RuO4 under stress , 2021, Nature Physics.

[2]  M. Dion,et al.  Publisher Correction: Ultrasound evidence for a two-component superconducting order parameter in Sr2RuO4 , 2020, Nature Physics.

[3]  M. Nicklas,et al.  Heat-capacity measurements under uniaxial pressure using a piezo-driven device. , 2020, The Review of scientific instruments.

[4]  E. Bauer,et al.  Evidence for even parity unconventional superconductivity in Sr2RuO4 , 2020, Proceedings of the National Academy of Sciences.

[5]  Thomas Scaffidi Degeneracy between even- and odd-parity superconductivity in the quasi-1D Hubbard model and implications for Sr2RuO4 , 2020, 2007.13769.

[6]  J. Schmalian,et al.  Z3-vestigial nematic order due to superconducting fluctuations in the doped topological insulators NbxBi2Se3 and CuxBi2Se3 , 2020, Nature Communications.

[7]  D. Sokolov,et al.  Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4 , 2020, Nature Physics.

[8]  S. Hayden,et al.  Reduction of the Spin Susceptibility in the Superconducting State of Sr_{2}RuO_{4} Observed by Polarized Neutron Scattering. , 2020, Physical review letters.

[9]  R. Thomale,et al.  A proposal for reconciling diverse experiments on the superconducting state in Sr2RuO4 , 2020, npj Quantum Materials.

[10]  D. Sokolov,et al.  Role of correlations in determining the Van Hove strain in Sr2RuO4 , 2019 .

[11]  H. Menke,et al.  Stabilizing even-parity chiral superconductivity in Sr2RuO4 , 2019, 1912.09525.

[12]  Y. Maeno,et al.  Momentum-resolved superconducting energy gaps of Sr2RuO4 from quasiparticle interference imaging , 2019, Proceedings of the National Academy of Sciences.

[13]  E. Bauer,et al.  Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance , 2019, Nature.

[14]  D. Sokolov,et al.  A key role of correlation effects in the Lifshitz transition in Sr$_2$RuO$_4$ , 2019, 1909.02743.

[15]  Y. Maeno,et al.  Reduction of the 17O Knight Shift in the Superconducting State and the Heat-up Effect by NMR Pulses on Sr2RuO4 , 2019, Journal of the Physical Society of Japan.

[16]  S. Simon,et al.  Superconducting order of Sr2RuO4 from a three-dimensional microscopic model , 2019, Physical Review Research.

[17]  P. Hirschfeld,et al.  Knight Shift and Leading Superconducting Instability from Spin Fluctuations in Sr_{2}RuO_{4}. , 2019, Physical review letters.

[18]  E. Bauer,et al.  Pronounced drop of $^{17}$O NMR Knight shift in superconducting state of Sr$_2$RuO$_4$. , 2019, 1904.00047.

[19]  D. Sokolov,et al.  Direct observation of a uniaxial stress-driven Lifshitz transition in Sr2RuO4 , 2019, npj Quantum Materials.

[20]  M. König,et al.  Uniaxial pressure control of competing orders in a high-temperature superconductor , 2018, Science.

[21]  Y. Maeno,et al.  Improved Single-Crystal Growth of Sr2RuO4 , 2018, Condensed Matter.

[22]  A. Mackenzie,et al.  Piezoelectric-based uniaxial pressure cell with integrated force and displacement sensors. , 2018, The Review of scientific instruments.

[23]  K. Moler,et al.  Micron-scale measurements of low anisotropic strain response of local Tc in Sr2RuO4 , 2018, Physical Review B.

[24]  Y. Maeno,et al.  Resistivity in the Vicinity of a van Hove Singularity: Sr_{2}RuO_{4} under Uniaxial Pressure. , 2017, Physical review letters.

[25]  P. Canfield,et al.  Nuclear magnetic resonance probe head design for precision strain control. , 2017, The Review of scientific instruments.

[26]  Z. Fisk,et al.  Surface-dominated conduction up to 240 K in the Kondo insulator SmB6 under strain. , 2016, Nature materials.

[27]  Y. Maeno,et al.  Even odder after twenty-three years: the superconducting order parameter puzzle of Sr2RuO4 , 2017, 1706.01942.

[28]  Y. Maeno,et al.  Vertical Line Nodes in the Superconducting Gap Structure of Sr2RuO4 , 2016, 1606.04936.

[29]  C. Fennie,et al.  Strain Control of Fermiology and Many-Body Interactions in Two-Dimensional Ruthenates. , 2016, Physical review letters.

[30]  S. Simon,et al.  Strong peak in Tc of Sr2RuO4 under uniaxial pressure , 2016, Science.

[31]  C. Fennie,et al.  Manipulating superconductivity in ruthenates through Fermi surface engineering , 2016, 1604.06661.

[32]  Y. Maeno,et al.  Thermodynamic evidence for nematic superconductivity in CuxBi2Se3 , 2016, Nature Physics.

[33]  M. Kriener,et al.  Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3 , 2015, Nature Physics.

[34]  Y. Maeno,et al.  Higher-Tc Superconducting Phase in Sr2RuO4 Induced by In-Plane Uniaxial Pressure , 2015, 1501.02868.

[35]  A. Kasahara,et al.  Sharp magnetization jump at the first-order superconducting transition in Sr 2 RuO 4 , 2014, 1410.0798.

[36]  Y. Maeno,et al.  Strong Increase of Tc of Sr2RuO4 Under Both Tensile and Compressive Strain , 2014, Science.

[37]  Y. Maeno,et al.  Spin-orbital entanglement and the breakdown of singlets and triplets in Sr2RuO4 revealed by spin- and angle-resolved photoemission spectroscopy. , 2014, Physical review letters.

[38]  A. Mackenzie,et al.  Piezoelectric-based apparatus for strain tuning. , 2014, The Review of scientific instruments.

[39]  S. Simon,et al.  Pairing symmetry and dominant band in Sr 2 RuO 4 , 2013, 1401.0016.

[40]  C. Kallin Chiral p-wave order in Sr2RuO4 , 2012, Reports on progress in physics. Physical Society.

[41]  Y. Maeno,et al.  Evaluation of Spin-Triplet Superconductivity in Sr2RuO4 , 2011, 1112.1620.

[42]  A. Georges,et al.  Coherence-incoherence crossover and the mass-renormalization puzzles in Sr(2)RuO(4). , 2010, Physical review letters.

[43]  Y. Maeno,et al.  Higher- T c superconducting phase in Sr 2 RuO 4 induced by uniaxial pressure , 2010, 1004.3705.

[44]  S. Raghu,et al.  Hidden quasi-one-dimensional superconductivity in Sr₂RuO₄. , 2010, Physical review letters.

[45]  M. Huber,et al.  Limits on superconductivity-related magnetization in Sr2RuO4 and PrOs4Sb12 from scanning SQUID microscopy , 2010, 1003.2189.

[46]  A. Swartz,et al.  Anisotropic dependence of superconductivity on uniaxial pressure in CeIrIn5. , 2009, Physical review letters.

[47]  L. Tjeng,et al.  Strong spin-orbit coupling effects on the Fermi surface of Sr2RuO4 and Sr2RhO4. , 2008, Physical review letters.

[48]  Y. Liu,et al.  Upper limit on spontaneous supercurrents in Sr 2 Ru O 4 , 2007, 0704.3364.

[49]  J. D. Strand,et al.  Dynamical Superconducting Order Parameter Domains in Sr2RuO4 , 2006, Science.

[50]  M. Fejer,et al.  High resolution polar Kerr effect measurements of Sr2RuO4: evidence for broken time-reversal symmetry in the superconducting state. , 2006, Physical review letters.

[51]  I. Žutić,et al.  Phase-sensitive tests of the pairing state symmetry in Sr(2)RuO(4). , 2005, Physical review letters.

[52]  Y. Maeno,et al.  Determination of the Superconducting Gap Structure in All Bands of the Spin-Triplet Superconductor Sr2RuO4 , 2004, cond-mat/0404070.

[53]  E. Ohmichi,et al.  Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor Sr2RuO4 , 2003 .

[54]  R. Zieve,et al.  Pressure and linear heat capacity in the superconducting state of thoriated UBe 13 , 2003, cond-mat/0310009.

[55]  Y. Maeno,et al.  The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing , 2003 .

[56]  T. Nomura,et al.  Erratum: Roles of Electron Correlations in the Spin-Triplet Superconductivity of Sr2RuO4 , 2002, cond-mat/0203453.

[57]  C. Miclea,et al.  Unconventional superconductivity in UBe13 probed by uniaxial stress , 2002 .

[58]  S. Hayden,et al.  Polarized-neutron scattering study of the cooper-pair moment in Sr2RuO4. , 2000, Physical review letters.

[59]  Y. Maeno,et al.  Unconventional superconductivity in Sr2RuO4 , 2000 .

[60]  E. M. Forgan,et al.  Reconstruction from small-angle neutron scattering measurements of the real space magnetic field distribution in the mixed state of Sr2RuO4. , 2000, Physical review letters.

[61]  Julian,et al.  Detailed topography of the fermi surface of Sr2RuO4 , 1999, Physical review letters.

[62]  Y. Maeno,et al.  Time-reversal symmetry-breaking superconductivity in Sr2RuO4 , 1998, Nature.

[63]  Y. Maeno,et al.  Extremely Strong Dependence of Superconductivity on Disorder in Sr2RuO4 , 1998 .

[64]  Y. Maeno,et al.  Two-Dimensional Fermi Liquid Behavior of the Superconductor Sr2RuO4 , 1997 .

[65]  Fujita,et al.  Quantum oscillations in the layered perovskite superconductor Sr2RuO4. , 1996, Physical review letters.

[66]  F. Lichtenberg,et al.  Superconductivity in a layered perovskite without copper , 1994, Nature.

[67]  G. Stewart,et al.  Specific-Heat Measurements on UBe13 under Uniaxial Pressure , 1994 .

[68]  Rosenbaum,et al.  Uniaxial-stress anisotropy of the double superconducting transition in UPt3. , 1992, Physical review letters.

[69]  Kazuo Ueda,et al.  Phenomenological theory of unconventional superconductivity , 1991 .

[70]  Flouquet,et al.  Critical point in the superconducting phase diagram of UPt3. , 1989, Physical review letters.

[71]  Kim,et al.  Specific heat of UPt3: Evidence for unconventional superconductivity. , 1988, Physical review letters.

[72]  Sigrist,et al.  Behavior of anisotropic superconductors under uniaxial stress. , 1987, Physical review. B, Condensed matter.

[73]  J. Schmalian,et al.  Inhomogeneous time-reversal symmetry breaking in Sr2RuO4 , 2021 .

[74]  Y. Maeno,et al.  Improved Single-Crystal Growth of Sr 2 RuO 4 , 2019 .