The Investigation of Electrothermal Characteristics of High-Voltage Lateral IGBT for ESD Protection

In this paper, the detailed characterizations of the lateral insulated-gate bipolar transistor (LIGBT) for the electro- static discharge (ESD) protection of power ICs are presented. Compared with the conventional lateral DMOS with the same structure except for the anode doping type, the LIGBT shows lower triggering voltage, faster voltage-clamping speed, and much higher ESD robustness. Experimental results demonstrate that the LIGBT with runway layout achieves excellent thermal breakdown current of more than 10 A with 250-μm device width. The high ESD performance enables the LIGBT to be used as a promising ESD protection device in the power ICs.

[1]  Juan A. Fernández,et al.  Analysis of new lateral insulated gate bipolar transistor structures for power applications , 1993 .

[2]  C. Duvvury,et al.  Lateral DMOS design for ESD robustness , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[3]  M. A. Shibib,et al.  Lateral MOS-gated power devices-a unified view , 1991 .

[4]  Bart Keppens,et al.  ESD protection solutions for high voltage technologies , 2004 .

[5]  A. Konrad,et al.  ESD Protection of NDMOS in 0.18μm High-Voltage CMOS Technology for Automotive Applications , 2008, 2008 20th International Symposium on Power Semiconductor Devices and IC's.

[6]  Gaudenzio Meneghesso,et al.  HBM and TLP ESD robustness in smart-power protection structures , 1999 .

[7]  Bo Breitholtz,et al.  Heat generation in Si bipolar power devices: The relative importance of various contributions , 1996 .

[8]  Wolfgang Fichtner,et al.  Analysis of lateral DMOS power devices under ESD stress conditions , 2000 .

[9]  Ming-Dou Ker,et al.  Double snapback characteristics in high-voltage nMOSFETs and the impact to on-chip ESD protection design , 2004 .

[10]  W. Fichtner,et al.  Analysis and compact modeling of lateral DMOS power devices under ESD stress conditions , 1999, Electrical Overstress/Electrostatic Discharge Symposium Proceedings. 1999 (IEEE Cat. No.99TH8396).

[11]  Vladislav Vashchenko,et al.  ESD Design for Analog Circuits , 2010 .

[12]  Jen-Chou Tseng,et al.  A SCR-buried BJT device for robust ESD protection with high latchup immunity in high-voltage technology , 2009, 2009 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits.

[13]  Vladislav Vashchenko,et al.  ESD Network Design Principles , 2010 .

[14]  S. Asai,et al.  A numerical model of avalanche breakdown in MOSFET's , 1978, IEEE Transactions on Electron Devices.

[15]  A. Sieck,et al.  Harnessing the base-pushout effect for ESD protection in bipolar and BiCMOS technologies , 2002, 2002 Electrical Overstress/Electrostatic Discharge Symposium.

[16]  Elyse Rosenbaum,et al.  An analysis of bipolar breakdown and its application to the design of ESD protection circuits , 2001, 2001 IEEE International Reliability Physics Symposium Proceedings. 39th Annual (Cat. No.00CH37167).

[17]  Jing Zhu,et al.  Investigation of the shift of hot spot in lateral diffused LDMOS under ESD conditions , 2010, Microelectronics Reliability.

[18]  W. Fichtner,et al.  Characterization and optimization of a bipolar ESD-device by measurements and simulations , 1998, Electrical Overstress/ Electrostatic Discharge Symposium Proceedings. 1998 (Cat. No.98TH8347).

[19]  H. Puchner,et al.  Novel Robust High Voltage ESD Clamps for LDMOS Protection , 2007, 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual.