Time-parallel simulation of the decay of homogeneous turbulence using Parareal with spatial coarsening
暂无分享,去创建一个
Serge Gratton | Xavier Vasseur | Julien Bodart | Thibaut Lunet | S. Gratton | X. Vasseur | T. Lunet | J. Bodart | Thibaut Lunet
[1] P. Moin,et al. Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow , 1994 .
[2] Rolf Krause,et al. A stencil-based implementation of Parareal in the C++ domain specific embedded language STELLA , 2014, Appl. Math. Comput..
[3] Raúl Sánchez,et al. Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm , 2010, J. Comput. Phys..
[4] S. Pope. Turbulent Flows: FUNDAMENTALS , 2000 .
[5] P. Moin,et al. Effect of numerical dissipation on the predicted spectra for compressible turbulence , 2022 .
[6] Rolf Krause,et al. Parallel-in-Space-and-Time Simulation of the Three-Dimensional, Unsteady Navier-Stokes Equations for Incompressible Flow , 2014, HPSC.
[7] William Gropp,et al. MPI: The Complete Reference , Vol. 2 - The MPI-2 Extensions , 1998 .
[8] Yvon Maday,et al. A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations , 2005 .
[9] Olga Mula Hernandez,et al. Some contributions towards the parallel simulation of time dependent neutron transport and the integration of observed data in real time , 2014 .
[10] Martin J. Gander,et al. 50 Years of Time Parallel Time Integration , 2015 .
[11] J. Marsden,et al. Tricubic interpolation in three dimensions , 2005 .
[12] Raúl Sánchez,et al. Event-based parareal: A data-flow based implementation of parareal , 2012, J. Comput. Phys..
[13] W. Schiesser. The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .
[14] Paul H. J. Kelly,et al. Optimised three-dimensional Fourier interpolation: An analysis of techniques and application to a linear-scaling density functional theory code , 2015, Comput. Phys. Commun..
[15] Jack Dongarra,et al. MPI: The Complete Reference , 1996 .
[16] Einar M. Rønquist,et al. Stability of the Parareal Algorithm , 2005 .
[17] Rolf Krause,et al. Convergence of Parareal for the Navier-Stokes equations depending on the Reynolds number , 2013, ArXiv.
[18] Martin J. Gander,et al. Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..
[19] Daniel Ruprecht,et al. Wave propagation characteristics of Parareal , 2017, Comput. Vis. Sci..
[20] Daniel Ruprecht. Shared Memory Pipelined Parareal , 2017, Euro-Par.
[21] Stéphane Jamme. Étude de l'interaction entre une turbulence homogène isotrope et une onde de choc , 1998 .
[22] Qiqi Wang,et al. Towards scalable parallel-in-time turbulent flow simulations , 2012, 1211.2437.
[23] A. Vincent,et al. The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.
[24] Eric Aubanel. Scheduling of tasks in the parareal algorithm , 2011, Parallel Comput..
[25] Johan Larsson,et al. Solving the compressible Navier-Stokes equations on up to 1.97 million cores and 4.1 trillion grid points , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).
[26] Jack Dongarra,et al. Applied Mathematics Research for Exascale Computing , 2014 .
[27] Charbel Farhat,et al. Time‐parallel implicit integrators for the near‐real‐time prediction of linear structural dynamic responses , 2006 .
[28] Rolf Krause,et al. Explicit Parallel-in-time Integration of a Linear Acoustic-Advection System , 2012, ArXiv.
[29] Parviz Moin,et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves , 2010, J. Comput. Phys..
[30] Diego Donzis,et al. Dissipation and enstrophy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations , 2008 .
[31] R. Rogallo. Numerical experiments in homogeneous turbulence , 1981 .
[32] Sanjiva K. Lele,et al. Reynolds- and Mach-number effects in canonical shock–turbulence interaction , 2013, Journal of Fluid Mechanics.
[33] S. Lele. Compact finite difference schemes with spectral-like resolution , 1992 .
[34] Xiaoying Dai,et al. Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems , 2012, SIAM J. Sci. Comput..
[35] Daniel Ruprecht,et al. Convergence of Parareal with spatial coarsening , 2014 .
[36] Gabriel Wittum,et al. Numerical simulation of skin transport using Parareal , 2015, Comput. Vis. Sci..
[37] Raúl Sánchez,et al. Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations , 2012, J. Comput. Phys..
[38] Martin J. Gander,et al. Analysis of a Krylov subspace enhanced parareal algorithm for linear problems , 2008 .
[39] J. Lions,et al. Résolution d'EDP par un schéma en temps « pararéel » , 2001 .
[40] William Gropp,et al. Mpi - The Complete Reference: Volume 2, the Mpi Extensions , 1998 .
[41] Michael L. Minion,et al. A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD , 2010 .
[42] Elena Celledoni,et al. Norges Teknisk-naturvitenskapelige Universitet Parallelization in Time for Thermo-viscoplastic Problems in Extrusion of Aluminium Parallelization in Time for Thermo-viscoplastic Problems in Extrusion of Aluminium , 2022 .
[43] Martin J. Gander,et al. Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .
[44] Mitsuo Yokokawa,et al. Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box , 2003 .
[45] Andrew G. Gerber,et al. Acceleration of unsteady hydrodynamic simulations using the parareal algorithm , 2017, J. Comput. Sci..