Time-parallel simulation of the decay of homogeneous turbulence using Parareal with spatial coarsening

Direct Numerical Simulation of turbulent flows is a computationally demanding problem that requires efficient parallel algorithms. We investigate the applicability of the time-parallel Parareal algorithm to an instructional case study related to the simulation of the decay of homogeneous isotropic turbulence in three dimensions. We combine a Parareal variant based on explicit time integrators and spatial coarsening with the space-parallel Hybrid Navier–Stokes solver. We analyse the performance of this space–time parallel solver with respect to speedup and quality of the solution. The results are compared with reference data obtained with a classical explicit integration, using an error analysis which relies on the energetic content of the solution. We show that a single Parareal iteration is able to reproduce with high fidelity the main statistical quantities characterizing the turbulent flow field.

[1]  P. Moin,et al.  Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow , 1994 .

[2]  Rolf Krause,et al.  A stencil-based implementation of Parareal in the C++ domain specific embedded language STELLA , 2014, Appl. Math. Comput..

[3]  Raúl Sánchez,et al.  Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm , 2010, J. Comput. Phys..

[4]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[5]  P. Moin,et al.  Effect of numerical dissipation on the predicted spectra for compressible turbulence , 2022 .

[6]  Rolf Krause,et al.  Parallel-in-Space-and-Time Simulation of the Three-Dimensional, Unsteady Navier-Stokes Equations for Incompressible Flow , 2014, HPSC.

[7]  William Gropp,et al.  MPI: The Complete Reference , Vol. 2 - The MPI-2 Extensions , 1998 .

[8]  Yvon Maday,et al.  A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations , 2005 .

[9]  Olga Mula Hernandez,et al.  Some contributions towards the parallel simulation of time dependent neutron transport and the integration of observed data in real time , 2014 .

[10]  Martin J. Gander,et al.  50 Years of Time Parallel Time Integration , 2015 .

[11]  J. Marsden,et al.  Tricubic interpolation in three dimensions , 2005 .

[12]  Raúl Sánchez,et al.  Event-based parareal: A data-flow based implementation of parareal , 2012, J. Comput. Phys..

[13]  W. Schiesser The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .

[14]  Paul H. J. Kelly,et al.  Optimised three-dimensional Fourier interpolation: An analysis of techniques and application to a linear-scaling density functional theory code , 2015, Comput. Phys. Commun..

[15]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[16]  Einar M. Rønquist,et al.  Stability of the Parareal Algorithm , 2005 .

[17]  Rolf Krause,et al.  Convergence of Parareal for the Navier-Stokes equations depending on the Reynolds number , 2013, ArXiv.

[18]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[19]  Daniel Ruprecht,et al.  Wave propagation characteristics of Parareal , 2017, Comput. Vis. Sci..

[20]  Daniel Ruprecht Shared Memory Pipelined Parareal , 2017, Euro-Par.

[21]  Stéphane Jamme Étude de l'interaction entre une turbulence homogène isotrope et une onde de choc , 1998 .

[22]  Qiqi Wang,et al.  Towards scalable parallel-in-time turbulent flow simulations , 2012, 1211.2437.

[23]  A. Vincent,et al.  The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.

[24]  Eric Aubanel Scheduling of tasks in the parareal algorithm , 2011, Parallel Comput..

[25]  Johan Larsson,et al.  Solving the compressible Navier-Stokes equations on up to 1.97 million cores and 4.1 trillion grid points , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[26]  Jack Dongarra,et al.  Applied Mathematics Research for Exascale Computing , 2014 .

[27]  Charbel Farhat,et al.  Time‐parallel implicit integrators for the near‐real‐time prediction of linear structural dynamic responses , 2006 .

[28]  Rolf Krause,et al.  Explicit Parallel-in-time Integration of a Linear Acoustic-Advection System , 2012, ArXiv.

[29]  Parviz Moin,et al.  Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves , 2010, J. Comput. Phys..

[30]  Diego Donzis,et al.  Dissipation and enstrophy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations , 2008 .

[31]  R. Rogallo Numerical experiments in homogeneous turbulence , 1981 .

[32]  Sanjiva K. Lele,et al.  Reynolds- and Mach-number effects in canonical shock–turbulence interaction , 2013, Journal of Fluid Mechanics.

[33]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[34]  Xiaoying Dai,et al.  Stable Parareal in Time Method for First- and Second-Order Hyperbolic Systems , 2012, SIAM J. Sci. Comput..

[35]  Daniel Ruprecht,et al.  Convergence of Parareal with spatial coarsening , 2014 .

[36]  Gabriel Wittum,et al.  Numerical simulation of skin transport using Parareal , 2015, Comput. Vis. Sci..

[37]  Raúl Sánchez,et al.  Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations , 2012, J. Comput. Phys..

[38]  Martin J. Gander,et al.  Analysis of a Krylov subspace enhanced parareal algorithm for linear problems , 2008 .

[39]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[40]  William Gropp,et al.  Mpi - The Complete Reference: Volume 2, the Mpi Extensions , 1998 .

[41]  Michael L. Minion,et al.  A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD , 2010 .

[42]  Elena Celledoni,et al.  Norges Teknisk-naturvitenskapelige Universitet Parallelization in Time for Thermo-viscoplastic Problems in Extrusion of Aluminium Parallelization in Time for Thermo-viscoplastic Problems in Extrusion of Aluminium , 2022 .

[43]  Martin J. Gander,et al.  Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .

[44]  Mitsuo Yokokawa,et al.  Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box , 2003 .

[45]  Andrew G. Gerber,et al.  Acceleration of unsteady hydrodynamic simulations using the parareal algorithm , 2017, J. Comput. Sci..