Sparsity-Based cholesky factorization and its application to hyperspectral anomaly detection

Estimating large covariance matrices has been a longstanding important problem in many applications and has attracted increased attention over several decades. This paper deals with two methods based on pre-existing works to impose sparsity on the covariance matrix via its unit lower triangular matrix (aka Cholesky factor) T. The first method serves to estimate the entries of T using the Ordinary Least Squares (OLS), then imposes sparsity by exploiting some generalized thresholding techniques such as Soft and Smoothly Clipped Absolute Deviation (SCAD). The second method directly estimates a sparse version of T by penalizing the negative normal log-likelihood with L1 and SCAD penalty functions. The resulting covariance estimators are always guaranteed to be positive definite. Some Monte-Carlo simulations as well as experimental data demonstrate the effectiveness of our estimators for hyperspectral anomaly detection using the Kelly anomaly detector.

[1]  F. Lehmann,et al.  HyMap hyperspectral remote sensing to detect hydrocarbons , 2001 .

[2]  M. Pourahmadi Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation , 1999 .

[3]  Dimitris G. Manolakis,et al.  Is there a best hyperspectral detection algorithm? , 2009, Defense + Commercial Sensing.

[4]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[5]  Joana Frontera-Pons,et al.  Adaptive Nonzero-Mean Gaussian Detection , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Jieping Ye,et al.  Multi-stage multi-task feature learning , 2012, J. Mach. Learn. Res..

[7]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[8]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Jocelyn Chanussot,et al.  Robust anomaly detection in Hyperspectral Imaging , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[10]  Jianhua Z. Huang,et al.  Covariance matrix selection and estimation via penalised normal likelihood , 2006 .

[11]  Tim R. McVicar,et al.  Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  D. Manolakis,et al.  Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms , 2016 .

[13]  Miguel Angel Veganzones,et al.  Hyperspectral Anomaly Detectors Using Robust Estimators , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[14]  S. Dutta,et al.  Study of crop growth parameters using Airborne Imaging Spectrometer data , 2001 .

[15]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[16]  Charles A. Bouman,et al.  Covariance Estimation for High Dimensional Data Vectors Using the Sparse Matrix Transform , 2008, NIPS.

[17]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[18]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[19]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[20]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[21]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[22]  Joana Frontera-Pons,et al.  False-alarm regulation for target detection in hyperspectral imaging , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[23]  Jieping Ye,et al.  A General Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization Problems , 2013, ICML.

[24]  Chein-I Chang,et al.  Anomaly detection and classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[25]  Tong Zhang Multi-stage Convex Relaxation for Feature Selection , 2011, 1106.0565.

[26]  S Matteoli,et al.  A tutorial overview of anomaly detection in hyperspectral images , 2010, IEEE Aerospace and Electronic Systems Magazine.

[27]  Tong Zhang,et al.  Analysis of Multi-stage Convex Relaxation for Sparse Regularization , 2010, J. Mach. Learn. Res..

[28]  Nasser M. Nasrabadi,et al.  Automated Hyperspectral Cueing for Civilian Search and Rescue , 2009, Proceedings of the IEEE.

[29]  M. Pourahmadi,et al.  Nonparametric estimation of large covariance matrices of longitudinal data , 2003 .

[30]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[31]  Bo Du,et al.  A Sparse Representation-Based Binary Hypothesis Model for Target Detection in Hyperspectral Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[32]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[33]  Eric Truslow,et al.  Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms , 2014, IEEE Signal Processing Magazine.

[34]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..