microRNA-based cancer cell reprogramming technology.

Epigenetic modifications play crucial roles in cancer initiation and development. Complete reprogramming can be achieved through the introduction of defined biological factors such as Oct4, Sox2, Klf4, and cMyc into mouse and human fibroblasts. Introduction of these transcription factors resulted in the modification of malignant phenotype behavior. Recent studies have shown that human and mouse somatic cells can be reprogrammed to become induced pluripotent stem cells using forced expression of microRNAs, which completely eliminates the need for ectopic protein expression. Considering the usefulness of RNA molecules, microRNA-based reprogramming technology may have future applications in regenerative and cancer medicine.

[1]  Wei Yan,et al.  Male germ cells express abundant endogenous siRNAs , 2011, Proceedings of the National Academy of Sciences.

[2]  M. Cleary,et al.  HIF induces human embryonic stem cell markers in cancer cells. , 2011, Cancer research.

[3]  W. Cavenee,et al.  Heterogeneity maintenance in glioblastoma: a social network. , 2011, Cancer research.

[4]  Stuart H. Orkin,et al.  Chromatin Connections to Pluripotency and Cellular Reprogramming , 2011, Cell.

[5]  Yoshifumi Kawamura,et al.  Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1 , 2011, Nature.

[6]  Mitsugu Sekimoto,et al.  Reprogramming of mouse and human cells to pluripotency using mature microRNAs. , 2011, Cell stem cell.

[7]  I. Wilmut,et al.  Nuclear transfer to eggs and oocytes. , 2011, Cold Spring Harbor perspectives in biology.

[8]  K. Mitsuya,et al.  Role for piRNAs and Noncoding RNA in de Novo DNA Methylation of the Imprinted Mouse Rasgrf1 Locus , 2011, Science.

[9]  Robert L. Judson,et al.  Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells , 2011, Nature Biotechnology.

[10]  H. Ng,et al.  The transcriptional and signalling networks of pluripotency , 2011, Nature Cell Biology.

[11]  Robert Blelloch,et al.  Small RNAs in early mammalian development: from gametes to gastrulation , 2011, Development.

[12]  Mudit Gupta,et al.  Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. , 2011, Cell stem cell.

[13]  M. Callanan,et al.  Induced malignant genome reprogramming in somatic cells by testis-specific factors. , 2011, Biochimica et biophysica acta.

[14]  M. Esteller,et al.  Cancer epigenetics reaches mainstream oncology , 2011, Nature Medicine.

[15]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[16]  Zhonghan Li,et al.  Small RNA-mediated regulation of iPS cell generation , 2011, The EMBO journal.

[17]  C. Stephan,et al.  Metastamirs: a stepping stone towards improved cancer management , 2011, Nature Reviews Clinical Oncology.

[18]  Andrew D. Johnson,et al.  Epigenetic reprogramming of breast cancer cells with oocyte extracts , 2011, Molecular Cancer.

[19]  Sheng Ding,et al.  Reprogramming of human primary somatic cells by OCT4 and chemical compounds. , 2010, Cell stem cell.

[20]  Donald C. Chang,et al.  MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways. , 2010, Cancer research.

[21]  Alexander Meissner,et al.  Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. , 2010, Cell stem cell.

[22]  P. Sharp,et al.  MicroRNA functions in stress responses. , 2010, Molecular cell.

[23]  C. Croce,et al.  Targeting microRNAs in cancer: rationale, strategies and challenges , 2010, Nature Reviews Drug Discovery.

[24]  Zhiwei Wang,et al.  Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. , 2010, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[25]  L. Dillon,et al.  DNA Instability at Chromosomal Fragile Sites in Cancer , 2010, Current genomics.

[26]  Shinsuke Yuasa,et al.  Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. , 2010, Cell stem cell.

[27]  S. Volinia,et al.  Fhit loss in lung preneoplasia: relation to DNA damage response checkpoint activation. , 2010, Cancer letters.

[28]  R. Jaenisch,et al.  Generation of iPSCs from cultured human malignant cells. , 2010, Blood.

[29]  P. Allavena,et al.  Inflammation-mediated promotion of invasion and metastasis , 2010, Cancer and Metastasis Reviews.

[30]  Mihaela Zavolan,et al.  MicroRNA Activity Is Suppressed in Mouse Oocytes , 2010, Current Biology.

[31]  R. Blelloch,et al.  MicroRNA Function Is Globally Suppressed in Mouse Oocytes and Early Embryos , 2010, Current Biology.

[32]  K. Mimori,et al.  Defined factors induce reprogramming of gastrointestinal cancer cells , 2009, Proceedings of the National Academy of Sciences.

[33]  Gerald C. Chu,et al.  Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. , 2009, Cancer cell.

[34]  J. Utikal,et al.  Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells , 2009, Journal of Cell Science.

[35]  Deepak M. Gupta,et al.  Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells , 2009, Proceedings of the National Academy of Sciences.

[36]  Shinya Yamanaka,et al.  Elite and stochastic models for induced pluripotent stem cell generation , 2009, Nature.

[37]  C. Croce,et al.  Fragile gene product, Fhit, in oxidative and replicative stress responses , 2009, Cancer science.

[38]  Dong Wook Han,et al.  Generation of induced pluripotent stem cells using recombinant proteins. , 2009, Cell stem cell.

[39]  Wei Wang,et al.  piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells , 2009, Nature.

[40]  K. Woltjen,et al.  Virus free induction of pluripotency and subsequent excision of reprogramming factors , 2009, Nature.

[41]  C. Roberts,et al.  Epigenetics and cancer without genomic instability , 2009, Cell cycle.

[42]  Shinya Yamanaka,et al.  Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors , 2008, Science.

[43]  J. Utikal,et al.  Induced Pluripotent Stem Cells Generated Without Viral Integration , 2008, Science.

[44]  Douglas A. Melton,et al.  In vivo reprogramming of adult pancreatic exocrine cells to β-cells , 2008, Nature.

[45]  Donald C. Chang,et al.  Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. , 2008, RNA.

[46]  Paul M Kulesa,et al.  Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[47]  Eric C. Lai,et al.  Endogenous small interfering RNAs in animals , 2008, Nature Reviews Molecular Cell Biology.

[48]  E. Sontheimer,et al.  An inside job for siRNAs. , 2008, Molecular cell.

[49]  Marius Wernig,et al.  A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types , 2008, Nature Biotechnology.

[50]  Takashi Aoi,et al.  Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach Cells , 2008, Science.

[51]  M. Araúzo-Bravo,et al.  Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors , 2008, Nature.

[52]  G. Calin,et al.  Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications , 2008, Mammalian Genome.

[53]  Wenjun Guo,et al.  Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds , 2008, Nature Biotechnology.

[54]  H. Schöler,et al.  A combined chemical and genetic approach for the generation of induced pluripotent stem cells. , 2008, Cell stem cell.

[55]  T. Nilsen Endo-siRNAs: yet another layer of complexity in RNA silencing , 2008, Nature Structural &Molecular Biology.

[56]  Y. Sakaki,et al.  Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes , 2008, Nature.

[57]  K. Mimori,et al.  Fhit-deficient hematopoietic stem cells survive hydroquinone exposure carrying precancerous changes. , 2008, Cancer research.

[58]  M. Hendrix,et al.  Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells , 2008, Proceedings of the National Academy of Sciences.

[59]  Shulan Tian,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[60]  T. Glover,et al.  Chromosome fragile sites. , 2007, Annual review of genetics.

[61]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[62]  D I Watson,et al.  MicroRNAs and cancer , 2007, The British journal of surgery.

[63]  C. Croce,et al.  Fhit modulates the DNA damage checkpoint response. , 2006, Cancer research.

[64]  Karl T Kelsey,et al.  MicroRNA responses to cellular stress. , 2006, Cancer research.

[65]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[66]  George D. Mellick,et al.  Parkinson's Disease in Relation to Pesticide Exposure and Nuclear Encoded Mitochondrial Complex I Gene Variants , 2006, Journal of biomedicine & biotechnology.

[67]  L. Cerchia,et al.  Noncoding RNAs in Cancer Medicine , 2006, Journal of biomedicine & biotechnology.

[68]  Brian S. Roberts,et al.  The colorectal microRNAome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Muller Fabbri,et al.  A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. , 2005, The New England journal of medicine.

[70]  K. Huebner,et al.  Fhit and CHK1 have opposing effects on homologous recombination repair. , 2005, Cancer research.

[71]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[72]  L. Chin,et al.  Nuclear cloning of embryonal carcinoma cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[74]  Rudolf Jaenisch,et al.  Reprogramming of a melanoma genome by nuclear transplantation. , 2004, Genes & development.

[75]  T. Graf,et al.  Stepwise Reprogramming of B Cells into Macrophages , 2004, Cell.

[76]  C. Croce,et al.  Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[77]  G. Sutherland,et al.  Rare fragile sites , 2003, Cytogenetic and Genome Research.

[78]  P. Sharp,et al.  Embryonic stem cell-specific MicroRNAs. , 2003, Developmental cell.

[79]  T. Glover,et al.  Common fragile sites , 2003, Cytogenetic and Genome Research.

[80]  T. Curran,et al.  Mouse embryos cloned from brain tumors. , 2003, Cancer research.

[81]  K. Cimprich,et al.  Fragile Sites: Breaking up over a Slowdown , 2003, Current Biology.

[82]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[83]  T. Glover,et al.  ATR Regulates Fragile Site Stability , 2002, Cell.

[84]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[85]  M. Teitell,et al.  Transdifferentiation and nuclear reprogramming in hematopoietic development and neoplasia , 2002, Immunological reviews.

[86]  C. Croce,et al.  FRA3B and other common fragile sites: the weakest links , 2001, Nature Reviews Cancer.

[87]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[88]  C. Croce,et al.  Role of FHIT in Human Cancer , 1999 .

[89]  J. Wang,et al.  Cellular responses to DNA damage. , 1998, Current opinion in cell biology.

[90]  R. Weinberg,et al.  The retinoblastoma protein and cell cycle control , 1995, Cell.

[91]  K. Kinzler,et al.  The multistep nature of cancer. , 1993, Trends in genetics : TIG.

[92]  R. Weinberg,et al.  Tumor suppressor genes. , 1991, Science.

[93]  H. Weintraub,et al.  Expression of a single transfected cDNA converts fibroblasts to myoblasts , 1987, Cell.

[94]  T. P. Dryja,et al.  Expression of recessive alleles by chromosomal mechanisms in retinoblastoma , 1983, Nature.

[95]  Shiyong Wu,et al.  MicroRNAs, cancer and cancer stem cells. , 2011, Cancer letters.

[96]  F. Fändrich,et al.  The programmable cell of monocytic origin (PCMO): a potential adult stem/progenitor cell source for the generation of islet cells. , 2010, Advances in experimental medicine and biology.

[97]  G. Calin,et al.  microRNAs in cancer: from bench to bedside. , 2010, Advances in cancer research.

[98]  C. Croce,et al.  FHIT in human cancer. , 1998, Advances in cancer research.