Bilingual Sentiment Consistency for Statistical Machine Translation

In this paper, we explore bilingual sentiment knowledge for statistical machine translation (SMT). We propose to explicitly model the consistency of sentiment between the source and target side with a lexicon-based approach. The experiments show that the proposed model significantly improves Chinese-to-English NIST translation over a competitive baseline.

[1]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[2]  Vasileios Hatzivassiloglou,et al.  Predicting the Semantic Orientation of Adjectives , 1997, ACL.

[3]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .

[4]  Philip Resnik,et al.  Modeling Syntactic and Semantic Structures in Hierarchical Phrase-based Translation , 2013, HLT-NAACL.

[5]  Pascale Fung,et al.  Semantic Roles for SMT: A Hybrid Two-Pass Model , 2009, NAACL.

[6]  Ding Liu,et al.  Semantic Role Features for Machine Translation , 2010, COLING.

[7]  Hermann Ney,et al.  Discriminative Training and Maximum Entropy Models for Statistical Machine Translation , 2002, ACL.

[8]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[9]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[10]  Xiaojun Wan,et al.  Co-Training for Cross-Lingual Sentiment Classification , 2009, ACL.

[11]  Zhang Cheng-gong,et al.  A sentiment analysis method based on a polarity lexicon , 2012 .

[12]  EstimationPeter,et al.  The Mathematics of Machine Translation : Parameter , 2004 .

[13]  George F. Foster,et al.  Batch Tuning Strategies for Statistical Machine Translation , 2012, NAACL.

[14]  Hermann Ney,et al.  HMM-Based Word Alignment in Statistical Translation , 1996, COLING.

[15]  David Chiang,et al.  A Hierarchical Phrase-Based Model for Statistical Machine Translation , 2005, ACL.

[16]  Hongfei Lin,et al.  Ontology-Driven Affective Chinese Text Analysis and Evaluation Method , 2007, ACII.

[17]  Rada Mihalcea,et al.  Learning Multilingual Subjective Language via Cross-Lingual Projections , 2007, ACL.

[18]  Christopher D. Manning,et al.  A Simple and Effective Hierarchical Phrase Reordering Model , 2008, EMNLP.

[19]  Rada Mihalcea,et al.  Multilingual Subjectivity Analysis Using Machine Translation , 2008, EMNLP.

[20]  Dan Klein,et al.  Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network , 2003, NAACL.

[21]  George F. Foster,et al.  Unpacking and Transforming Feature Functions: New Ways to Smooth Phrase Tables , 2011, MTSUMMIT.

[22]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[23]  Roland Kuhn,et al.  Bilingual Sense Similarity for Statistical Machine Translation , 2010, ACL.

[24]  J. M. Kittross The measurement of meaning , 1959 .

[25]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[26]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[27]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[28]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[29]  Philipp Koehn,et al.  Findings of the 2012 Workshop on Statistical Machine Translation , 2012, WMT@NAACL-HLT.

[30]  Philipp Koehn,et al.  Statistical Significance Tests for Machine Translation Evaluation , 2004, EMNLP.