Water vapor near the cloud tops of Venus from Venus Express/VIRTIS dayside data

Abstract Observations of the dayside of Venus performed by the high spectral resolution channel (–H) of the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board the ESA Venus Express mission have been used to measure the altitude of the cloud tops and the water vapor abundance around this level with a spatial resolution ranging from 100 to 10 km. CO 2 and H 2 O bands between 2.48 and 2.60 μm are analyzed to determine the cloud top altitude and water vapor abundance near this level. At low latitudes (±40°) mean water vapor abundance is equal to 3 ± 1 ppm and the corresponding cloud top altitude at 2.5 μm is equal to 69.5 ± 2 km. Poleward from middle latitudes the cloud top altitude gradually decreases down to 64 km, while the average H 2 O abundance reaches its maximum of 5 ppm at 80° of latitude with a large scatter from 1 to 15 ppm. The calculated mass percentage of the sulfuric acid solution in cloud droplets of mode 2 (∼1 μm) particles is in the range 75–83%, being in even more narrow interval of 80–83% in low latitudes. No systematic correlation of the dark UV markings with the cloud top altitude or water vapor has been observed.

[1]  P. Read,et al.  Superrotation in a Venus general circulation model , 2007 .

[2]  T. Encrenaz,et al.  The Thermal Profile and Water Abundance in the Venus Mesosphere from H2O and HDO Millimeter Observations , 1995 .

[3]  Larry W. Esposito,et al.  Particulate matter in the Venus atmosphere , 1985 .

[4]  Larry W. Esposito,et al.  SO2 in the Middle Atmosphere of Venus: IR Measurements from Venera-15 and Comparison to UV Data , 1993 .

[5]  F. Mills Water vapor in the venus middle atmosphere , 1999 .

[6]  M. Pätzold,et al.  Structure of the Venus neutral atmosphere as observed by the Radio Science experiment VeRa on Venus Express , 2009 .

[7]  A. T. Young Are the clouds of venus sulfuric acid , 1973 .

[8]  G. Piccioni,et al.  Vortex circulation on Venus: Dynamical similarities with terrestrial hurricanes , 2009 .

[9]  Joe Zender,et al.  Venus Express science planning , 2006 .

[10]  P. Hamill,et al.  A new parameterization of H2SO4/H2O aerosol composition: Atmospheric implications , 1997 .

[11]  W. Giauque,et al.  The Thermodynamic Properties of Aqueous Sulfuric Acid Solutions and Hydrates from 15 to 300°K.1 , 1960 .

[12]  Robert R. Gamache,et al.  CO2-broadening of water-vapor lines , 1995 .

[13]  R. Isaacs,et al.  Multiple scattering LOWTRAN and FASCODE models. , 1987, Applied optics.

[14]  P. Irwin Temporal and spatial variations in the Venus mesosphere retrieved from Pioneer Venus OIR , 1997 .

[15]  Fredric W. Taylor,et al.  The global distribution of water vapor in the middle atmosphere of Venus , 1982 .

[16]  P. Drossart,et al.  Altimetry of the Venus cloud tops from the Venus Express observations , 2009 .

[17]  Andrea Accomazzo,et al.  Venus Express—The first European mission to Venus , 2005 .

[18]  Giuseppe Piccioni,et al.  Vertical structure of the Venus cloud top from the VeRa and VIRTIS observations onboard Venus Express , 2012 .

[19]  P. Irwin,et al.  Water vapor abundance in Venus' middle atmosphere from Pioneer Venus OIR and Venera 15 FTS measurements , 2005 .

[20]  Henry E. Revercomb,et al.  Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude , 1985 .

[21]  Mary Elizabeth. Koukouli Remote sensing of water vapour in Venus' middle atmospere , 2002 .

[22]  Giuseppe Piccioni,et al.  A latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of Venus: Spectroscopic studies using VIRTIS‐H , 2008 .

[23]  E. Barker Observations of Venus water vapor over the disk of Venus: The 1972–1974 data using the H2O lines at 8197 Å and 8176 Å , 1975 .

[24]  Angioletta Coradini,et al.  Scientific goals for the observation of Venus by VIRTIS on ESA/Venus Express mission , 2007 .

[25]  David Crisp,et al.  Venus Monitoring Camera for Venus Express , 2005 .

[26]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[27]  Giuseppe Piccioni,et al.  Spatial variability of carbon monoxide in Venus' mesosphere from Venus Express/Visible and Infrared Thermal Imaging Spectrometer measurements , 2008 .

[28]  Kent F. Parmer OPTICAL CONSTANTS OF SULFURIC ACID , 1974 .

[29]  Giuseppe Piccioni,et al.  Atmospheric structure and dynamics as the cause of ultraviolet markings in the clouds of Venus , 2008, Nature.

[30]  L. Travis,et al.  Polarization studies of the Venus UV contrasts - Cloud height and haze variability , 1982 .

[31]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[32]  Eric Villard,et al.  HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express , 2008 .

[33]  Angioletta Coradini,et al.  VIRTIS: The Visible and Infrared Thermal Imaging Spectrometer , 2007 .

[34]  Giuseppe Piccioni,et al.  Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations , 2009 .

[35]  David Crisp,et al.  Morphology of the cloud tops as observed by the Venus Express Monitoring Camera , 2012 .

[36]  Giuseppe Piccioni,et al.  Tropospheric carbon monoxide concentrations and variability on Venus from Venus Express/VIRTIS-M observations , 2008 .

[37]  V. M. Linkin,et al.  Structure of the Venus atmosphere , 2007 .

[38]  D. W. Strecker,et al.  Properties of the clouds of Venus, as inferred from airborne observations of its near-infrared reflectivity spectrum , 1978 .

[39]  V. Krasnopolsky Chemical composition of Venus atmosphere and clouds: Some unsolved problems , 2006 .

[40]  V. M. Linkin,et al.  Water vapor and sulfur dioxide abundances at the Venus cloud tops from the Venera-15 infrared spectrometry data , 1990 .

[41]  M. Gurwell,et al.  SWAS observations of water vapor in the Venus mesosphere , 2007 .

[42]  V. Krasnopolsky Spatially-resolved high-resolution spectroscopy of Venus 2. Variations of HDO, OCS, and SO2 at the cloud tops , 2010 .

[43]  K. F. Palmer,et al.  Optical constants of sulfuric Acid; application to the clouds of venus? , 1975, Applied optics.

[44]  Nikolay Ignatiev,et al.  Planetary Fourier spectrometer data analysis: Fast radiative transfer models , 2005 .

[45]  J. W. Hovenier,et al.  Interpretation of the polarization of Venus , 1974 .

[46]  M. Tomasko,et al.  Distribution and source of the UV absorption in Venus' atmosphere , 1980 .

[47]  F. J. Zeleznik Thermodynamic Properties of the Aqueous Sulfuric Acid System to 350 K , 1991 .

[48]  V. I. Moroz,et al.  WATER VAPOUR IN THE MIDDLE ATMOSPHERE OF VENUS : AN IMPROVED TREATMENT OF THE VENERA 15 IR SPECTRA , 1999 .

[49]  R. Clancy,et al.  Water vapor variations in the Venus mesosphere from microwave spectra , 2004 .

[50]  J. Pollack,et al.  H2O-H2SO4 system in Venus' clouds and OCS, CO, and H2SO4 profiles in Venus' troposphere. , 1994, Icarus.