Auto-regressive shape classifiers in time varying noise

Abstract Good results have been reported in a number of recent studies where auto-regressive shape classifiers have been used to allocate objects to a pre-determined number of classes. It is shown that this approach may give unsatisfactory results when applied to imaging systems whose noise characteristics vary substantially over time. Such variation may be due to changes in atmospheric conditions or the relative effect of discretization errors. Observations are based on the reconstruction of a number of noisy synthetic templates.

[1]  Anastasios N. Venetsanopoulos,et al.  M-estimators in robust nonlinear image restoration , 1990 .

[2]  N. Mohankrishnan,et al.  Shape recognition using a nonstationary autoregressive hidden Markov model , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[3]  Robert B. McGhee,et al.  Aircraft Identification by Moment Invariants , 1977, IEEE Transactions on Computers.

[4]  Yang He,et al.  2-D Shape Classification Using Hidden Markov Model , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Ezzatollah Salari,et al.  Recognition of partially occluded objects using B-spline representation , 1991, Other Conferences.

[6]  Takio Kurita,et al.  Complex Autoregressive Model for Shape Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Abhinanda Sarkar,et al.  Shape Description by Time Series , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  L. Gupta,et al.  Non-linear alignment of neural net outputs for partial shape classification , 1991, Pattern Recognit..

[9]  Owen Robert Mitchell,et al.  Partial Shape Recognition Using Dynamic Programming , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Nahum Kiryati,et al.  Calculating geometric properties from fourier representation , 1989, Pattern Recognit..

[11]  K.-B. Eom,et al.  Maximum likelihood decision for recognition of noisy shapes , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[12]  Louis-François Pau,et al.  An introduction to infrared image acquisition and classification systems , 1983 .

[13]  Anna Maria Fanelli,et al.  A Fourier descriptor set for recognizing nonstylized numerals , 1978 .

[14]  Chun-Shin Lin,et al.  New forms of shape invariants from elliptic fourier descriptors , 1987, Pattern Recognit..

[15]  I. D. Hill,et al.  An Efficient and Portable Pseudo‐Random Number Generator , 1982 .

[16]  George Papadourakis,et al.  Object recognition using invariant object boundary representations and neural network models , 1992, Pattern Recognit..

[17]  Manohar Das,et al.  Nonstationary autoregressive modeling of object contours , 1992, IEEE Trans. Signal Process..

[18]  M. Varga,et al.  Dynamic elastic image stretching technique applied to thermographic images , 1990 .

[19]  Zen Chen,et al.  Computer vision for robust 3D aircraft recognition with fast library search , 1991, Pattern Recognit..

[20]  J. Park,et al.  Recognition of shapes by statistical modeling of centroidal profile , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[21]  I. D. Hill,et al.  Correction: Algorithm AS 183: An Efficient and Portable Pseudo-Random Number Generator , 1982 .

[22]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[23]  Rangasami L. Kashyap,et al.  Optimal feature selection and decision rules in classification problems with time series , 1978, IEEE Trans. Inf. Theory.

[24]  Filson H. Glanz,et al.  An Autoregressive Model Approach to Two-Dimensional Shape Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  D.J. Anderson,et al.  Optimal Estimation of Contour Properties by Cross-Validated Regularization , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Isaac Weiss,et al.  Shape Reconstruction on a Varying Mesh , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[28]  Anthony P. Reeves,et al.  Three-Dimensional Shape Analysis Using Moments and Fourier Descriptors , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Rama Chellappa,et al.  Stochastic models for closed boundary analysis: Representation and reconstruction , 1981, IEEE Trans. Inf. Theory.

[30]  Ulf Grenander,et al.  A computer experiment in pattern theory , 1989 .

[31]  Theodosios Pavlidis,et al.  Algorithms for Shape Analysis of Contours and Waveforms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  K. Mardia,et al.  General shape distributions in a plane , 1991, Advances in Applied Probability.

[33]  Alastair R. Allen,et al.  Fish species recognition by shape analysis of images , 1990, Pattern Recognit..

[34]  Richard H. Glendinning,et al.  Signal plus noise models in shape classification , 1994, Pattern Recognit..

[35]  Manohar Das,et al.  A Bivariate Autoregressive Technique for Analysis and Classification of Planar Shapes , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Charles R. Giardina,et al.  Discrete Black and White Object Recognition via Morphological Functions , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Jian Xu,et al.  A new technique for shape analysis using orthogonal polynomials , 1988, Pattern Recognit. Lett..

[38]  Edward J. Delp,et al.  Partial Shape Recognition: A Landmark-Based Approach , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Ezzatollah Salari,et al.  Recognition of partially occluded objects using B-spline representation , 1991, Pattern Recognit..

[40]  Rama Chellappa,et al.  Classification of Partial 2-D Shapes Using Fourier Descriptors , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Anjan Sarkar,et al.  An identification approach for 2-D autoregressive models in describing textures , 1991, CVGIP Graph. Model. Image Process..