Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek–Brown criterion

Abstract This paper applies numerical limit analyses to evaluate the ultimate bearing capacity of a surface footing resting on a rock mass whose strength can be described by the generalised Hoek–Brown failure criterion [Hoek E, Carranza-Torres C, Corkum B. Hoek–Brown failure criterion—2002 edition. In: Proceedings of the North American rock mechanics society meeting in Toronto, 2002]. This criterion is applicable to intact rock or heavily jointed rock masses that can be considered homogeneous and isotropic. Rigorous bounds on the ultimate bearing capacity are obtained by employing finite elements in conjunction with the upper and lower bound limit theorems of classical plasticity. Results from the limit theorems are found to bracket the true collapse load to within approximately 2%, and have been presented in the form of bearing capacity factors for a range of material properties. Where possible, a comparison is made between existing numerical analyses, empirical and semi-empirical solutions.

[1]  S. Sloan,et al.  A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion , 1995 .

[2]  日本道路協会 Specifications for highway bridges , 1984 .

[3]  A. Serrano,et al.  ALLOWABLE BEARING CAPACITY OF ROCK FOUNDATIONS USING A NON-LINEAR FAILURE CRITERIUM , 1996 .

[4]  Scott W. Sloan,et al.  Upper bound limit analysis using linear finite elements and non‐linear programming , 2001 .

[5]  Jian-Hua Yin,et al.  Influence of a nonlinear failure criterion on the bearing capacity of a strip footing resting on rock mass using a lower bound approach , 2003 .

[6]  F. G. Bell,et al.  Engineering in Rock Masses , 1992 .

[7]  A. Serrano,et al.  Ultimate bearing capacity of an anisotropic discontinuous rock mass. Part I: Basic modes of failure , 1998 .

[8]  A. Serrano,et al.  Ultimate bearing capacity at the tip of a pile in rock—part 2: application , 2002 .

[9]  A. Serrano,et al.  Ultimate bearing capacity at the tip of a pile in rock—part 1: theory , 2002 .

[10]  A. Serrano,et al.  Ultimate bearing capacity of rock masses , 1994 .

[11]  Scott W. Sloan,et al.  Lower bound limit analysis using finite elements and linear programming , 1988 .

[12]  S. Sloan,et al.  Upper bound limit analysis using discontinuous velocity fields , 1995 .

[13]  E. T. Brown,et al.  EMPIRICAL STRENGTH CRITERION FOR ROCK MASSES , 1980 .

[14]  E. Hoek,et al.  A brief history of the development of the Hoek-Brown failure criterion , 2007, Soils and Rocks.

[15]  John P. Carter,et al.  Limit analysis of the bearing capacity of fissured materials , 2000 .

[16]  Evert Hoek,et al.  HOEK-BROWN FAILURE CRITERION - 2002 EDITION , 2002 .

[17]  A. Serrano,et al.  Ultimate bearing capacity of an anisotropic discontinuous rock massPart II: Determination procedure , 1998 .

[18]  Evert Hoek,et al.  Practical estimates of rock mass strength , 1997 .

[19]  Scott W. Sloan,et al.  Lower bound solutions for bearing capacity of jointed rock , 2004 .

[20]  Scott W. Sloan,et al.  Lower bound limit analysis using non‐linear programming , 2002 .

[21]  K. Douglas,et al.  Strength Of Intact Rock And Rock Masses , 2000 .

[22]  A. Serrano,et al.  Ultimate bearing capacity of rock masses based on the modified Hoek–Brown criterion , 2000 .

[23]  V. V. Sokolovskii,et al.  Statics of Granular Media , 1965 .

[24]  Nick Barton,et al.  Some new Q-value correlations to assist in site characterisation and tunnel design , 2002 .

[25]  Evert Hoek,et al.  Strength of jointed rock masses , 1983 .