On the calculation of the finite Hankel transform eigenfunctions

In this work, we discuss the numerical computation of the eigenvalues and eigenfunctions of the finite (truncated) Hankel transform, important for numerous applications. Due to the very special behavior of the Hankel transform eigenfunctions, their direct numerical calculation often causes an essential loss of accuracy.Here, we present several simple, efficient and robust numerical techniques to compute Hankel transform eigenfunctions via the associated singular self-adjoint Sturm-Liouville operator. The properties of the proposed approaches are compared and illustrated by means of numerical experiments.

[1]  A. R. Forsyth Theory of Differential Equations , 1961 .

[2]  Richard Weiss,et al.  Difference Methods for Boundary Value Problems with a Singularity of the First Kind , 1976 .

[3]  The role of filters and the singular-value decomposition for the inverse Born approximation , 1986 .

[4]  Xin Zhang Wavenumber Spectrum of Very Short Wind Waves: An Application of Two-Dimensional Slepian Windows to Spectral Estimation , 1994 .

[5]  E Theodore,et al.  NUMERICAL ANALYSIS AND APPLIED MATHEMATICS , 2010 .

[6]  Pierluigi Amodio,et al.  A Stepsize Variation Strategy for the Solution of Regular Sturm‐Liouville Problems , 2011 .

[7]  Winfried Auzinger,et al.  COLLOCATION METHODS FOR THE SOLUTION OF EIGENVALUE PROBLEMS FOR SINGULAR ORDINARY DIFFERENTIAL EQUATIONS , 2006 .

[8]  Alexis Carlotti,et al.  Apodized apertures for solar coronagraphy , 2007, Astronomical Telescopes + Instrumentation.

[9]  Alfred K. Louis,et al.  Nonuniqueness in inverse radon problems: The frequency distribution of the ghosts , 1984 .

[10]  N. B. Konyukhova,et al.  Computation of radial wave functions for spheroids and triaxial ellipsoids by the modified phase function method , 1992 .

[11]  A. KLUG,et al.  Three-dimensional Image Reconstruction from the Viewpoint of information Theory , 1972, Nature.

[12]  W. P. Latham,et al.  Calculation of prolate functions for optical analysis. , 1987, Applied optics.

[13]  Pierluigi Amodio,et al.  High-order finite difference schemes for the solution of second-order BVPs , 2005 .

[14]  G. Boyer,et al.  Pupil filters for moderate superresolution. , 1976, Applied optics.

[15]  C. Aime Radon approach to shaped and apodized apertures for imaging exoplanets , 2005 .

[16]  Abderrazek Karoui Unidimensional and bidimensional prolate spheroidal wave functions and applications , 2011, J. Frankl. Inst..

[17]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[18]  L. Brugnano,et al.  Solving differential problems by multistep initial and boundary value methods , 1998 .

[19]  Othmar Koch,et al.  Numerical solution of singular ODE eigenvalue problems in electronic structure computations , 2010, Comput. Phys. Commun..

[20]  S. Sherif,et al.  Eigenfunction expansion of the electric fields in the focal region of a high numerical aperture focusing system. , 2008, Optics express.

[21]  G. M.,et al.  Theory of Differential Equations , 1902, Nature.

[22]  M. Kolobov,et al.  Quantum-statistical analysis of superresolution for optical systems with circular symmetry , 2008 .

[23]  J. C. Heurtley Hyperspheroidal Functions-Optical Resonators with Circular Mirrors , 1964 .

[24]  Abderrazek Karoui,et al.  Spectral analysis of the finite Hankel transform and circular prolate spheroidal wave functions , 2009, J. Comput. Appl. Math..

[25]  L. A. Vaĭnshteĭn,et al.  Open resonators and open waveguides , 1969 .

[26]  Pierluigi Amodio,et al.  A Matrix Method for the Solution of Sturm-Liouville Problems 1 , 2011 .

[27]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[28]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[29]  V. Perez-Mendez,et al.  Limited Angle 3-D Reconstructions from Continuous and Pinhole Projections , 1980, IEEE Transactions on Nuclear Science.

[30]  G. Borgiotti Hyperspheroidal functions-high beam efficiency illumination for circular antennas , 1969 .

[31]  Pierluigi Amodio,et al.  High Order Finite Difference Schemes for the Numerical Solution of Eigenvalue Problems for IVPs in ODEs , 2010 .

[32]  Lev Albertovich Weinstein,et al.  Open Resonators and Open Waveguides , 1970 .

[33]  On the aperture and pattern space factors for rectangular and circular apertures , 1971 .

[34]  N. B. Konyukhova,et al.  Evaluation of prolate spheroidal function by solving the corresponding differential equations , 1984 .