Extreme value theory for non-uniformly expanding dynamical systems

We establish extreme value statistics for functions with multiple maxima and some degree of regularity on certain non-uniformly expanding dynamical systems. We also establish extreme value statistics for time-series of observations on discrete and continuous suspensions of certain non-uniformly expanding dynamical systems via a general lifting theorem. The main result is that a broad class of observations on these systems exhibit the same extreme value statistics as i.i.d processes with the same distribution function.

[1]  Sandro Vaienti,et al.  Statistics of Return Times:¶A General Framework and New Applications , 1999 .

[2]  M. Thaler Transformations on [0, 1] with infinite invariant measures , 1983 .

[3]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[4]  R. M. Loynes,et al.  Extreme Values in Uniformly Mixing Stationary Stochastic Processes , 1965 .

[5]  W. Rudin Real and complex analysis , 1968 .

[6]  Andrei Török,et al.  Statistical limit theorems for suspension flows , 2004 .

[7]  L. Young,et al.  STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .

[8]  R. Bhansali,et al.  FREQUENCY ANALYSIS OF CHAOTIC INTERMITTENCY MAPS WITH SLOWLY DECAYING CORRELATIONS , 2007 .

[9]  S. Luzzatto,et al.  STATISTICAL PROPERTIES OF ONE-DIMENSIONAL MAPS WITH CRITICAL POINTS AND SINGULARITIES , 2006, 0709.1723.

[10]  Член-корреспондент Альфред Реньи К теории предельных теорем для сумм независимых случайных величин , 1950 .

[11]  J. Hüsler Extremes and related properties of random sequences and processes , 1984 .

[12]  M. Hirata,et al.  Poisson law for Axiom A diffeomorphisms , 1993, Ergodic Theory and Dynamical Systems.

[13]  V. Baladi Positive transfer operators and decay of correlations , 2000 .

[14]  Matthew Nicol,et al.  Communications in Mathematical Physics Almost Sure Invariance Principle for Nonuniformly Hyperbolic Systems , 2022 .

[15]  Ana Cristina Moreira Freitas,et al.  Extreme values for Benedicks–Carleson quadratic maps , 2007, Ergodic Theory and Dynamical Systems.

[16]  G. Duclos New York 1987 , 2000 .

[17]  B. Pitskel,et al.  Poisson limit law for Markov chains , 1991, Ergodic Theory and Dynamical Systems.

[18]  Return time statistics via inducing , 2000, Ergodic Theory and Dynamical Systems.

[19]  Pierre Collet,et al.  Statistics of closest return for some non-uniformly hyperbolic systems , 1999, Ergodic Theory and Dynamical Systems.

[20]  Jorge Milhazes Freitas,et al.  On the link between dependence and independence in extreme value theory for dynamical systems , 2008 .

[21]  Matthew Nicol,et al.  Extreme value theory and return time statistics for dispersing billiard maps and flows, Lozi maps and Lorenz-like maps , 2011, Ergodic Theory and Dynamical Systems.

[22]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[23]  Ana Cristina Moreira Freitas,et al.  Hitting time statistics and extreme value theory , 2008, 0804.2887.

[24]  Lei Si Ni Ke Resnick.S.I. Extreme values. regular variation. and point processes , 2011 .

[25]  Chinmaya Gupta,et al.  Extreme-value distributions for some classes of non-uniformly partially hyperbolic dynamical systems , 2008, Ergodic Theory and Dynamical Systems.

[26]  S. Vaienti,et al.  The compound Poisson distribution and return times in dynamical systems , 2008, 0804.1032.

[27]  Dmitry Dolgopyat,et al.  Limit theorems for partially hyperbolic systems , 2003 .

[28]  N. Haydn,et al.  Hitting and return times in ergodic dynamical systems , 2004, math/0410384.

[29]  G. Eagleson Some Simple Conditions for Limit Theorems to Be Mixing , 1977 .

[30]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[31]  L. Young Recurrence times and rates of mixing , 1999 .

[32]  A. Rényi On mixing sequences of sets , 1958 .