On dependability of FPGA-based evolvable hardware systems that utilize virtual reconfigurable circuits

This paper describes experiments conducted to estimate how the use of (area-demanding) virtual reconfigurable circuits (VRC) influences the dependability of FPGA-based evolvable systems. It is shown that these systems are not so sensitive to faults as their area-demanding implementations could evoke. Evolutionary techniques are utilized to design fault tolerant circuits in a virtual reconfigurable circuit and to perform their automatic functional recovery in case of occurence of faults in a configuration memory of FPGA. All the experiments are performed on models of reconfigurable devices. This paper does not claim that the use of the VRC improves the dependability; it shows how the use of VRCs could influence the dependability.

[1]  Adrian Stoica,et al.  Evolvable hardware solutions for extreme temperature electronics , 2001, Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-2001.

[2]  Ronald F. DeMara,et al.  A Genetic Representation for Evolutionary Fault Recovery in Virtex FPGAs , 2003, ICES.

[3]  Julian Francis Miller,et al.  Principles in the Evolutionary Design of Digital Circuits—Part II , 2000, Genetic Programming and Evolvable Machines.

[4]  M. Sipper,et al.  Toward robust integrated circuits: The embryonics approach , 2000, Proceedings of the IEEE.

[5]  Lukás Sekanina,et al.  An Evolvable Combinational Unit for FPGAs , 2004, Comput. Artif. Intell..

[6]  Vu Duong,et al.  Experimental results in evolutionary fault-recovery for field programmable analog devices , 2003, NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings..

[7]  A. Candelori,et al.  Heavy ion effects on configuration logic of Virtex FPGAs , 2005, 11th IEEE International On-Line Testing Symposium.

[8]  Julian Francis Miller,et al.  Evolving messy gates for fault tolerance: some preliminary findings , 2001, Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-2001.

[9]  Lukás Sekanina,et al.  Extrinsic and Intrinsic Evolution of Multifunctional Combinational Modules , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[10]  Yang Zhang,et al.  Digital circuit design using intrinsic evolvable hardware , 2004, Proceedings. 2004 NASA/DoD Conference on Evolvable Hardware, 2004..

[11]  Paolo Bernardi,et al.  On the evaluation of SEU sensitiveness in SRAM-based FPGAs , 2004, Proceedings. 10th IEEE International On-Line Testing Symposium.

[12]  Lukás Sekanina,et al.  Intrinsic Evolution of Sorting Networks: A Novel Complete Hardware Implementation for FPGAs , 2005, ICES.

[13]  Tughrul Arslan,et al.  Evolvable Components—From Theory to Hardware Implementations , 2005, Genetic Programming and Evolvable Machines.

[14]  Adrian Thompson,et al.  Evolution of Self-diagnosing Hardware , 2003, ICES.

[15]  Lukás Sekanina,et al.  An Evolvable Image Filter: Experimental Evaluation of a Complete Hardware Implementation in FPGA , 2005, ICES.

[16]  Andrew M. Tyrrell,et al.  Embryonics+immunotronics: a bio-inspired approach to fault tolerance , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[17]  Vu Duong,et al.  Circuit self-recovery experiments in extreme environments , 2004, Proceedings. 2004 NASA/DoD Conference on Evolvable Hardware, 2004..

[18]  M. Caffrey,et al.  Correcting single-event upsets through virtex partial configuration , 2000 .

[19]  James A. Foster,et al.  Size versus robustness in evolved sorting networks: is bigger better? , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[20]  Vu Duong,et al.  Evolution of analog circuits on field programmable transistor arrays , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[21]  Lukás Sekanina Virtual Reconfigurable Circuits for Real-World Applications of Evolvable Hardware , 2003, ICES.

[22]  Niraj K. Jha,et al.  Fault-tolerant computer system design , 1996, IEEE Parallel & Distributed Technology: Systems & Applications.

[23]  Adrian Thompson,et al.  Hardware evolution - automatic design of electronic circuits in reconfigurable hardware by artificial evolution , 1999, CPHC/BCS distinguished dissertations.

[24]  Kyrre Glette,et al.  A Flexible On-Chip Evolution System Implemented on a Xilinx Virtex-II Pro Device , 2005, ICES.

[25]  TomasM art ´ inek An Evolvable Image Filter: Experimental Evaluation of a Complete Hardware Implementation in FPGA , 2005 .

[26]  Michael J. Wirthlin,et al.  The reliability of FPGA circuit designs in the presence of radiation induced configuration upsets , 2003, 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2003. FCCM 2003..