Nanomechanical coupling between microwave and optical photons

A nanomechanical interface between optical photons and microwave electrical signals is now demonstrated. Coherent transfer between microwave and optical fields is achieved by parametric electro-optical coupling in a piezoelectric optomechanical crystal, and this on-chip technology could form the basis of photonic networks of superconducting quantum bits.

[1]  C. Regal,et al.  From cavity electromechanics to cavity optomechanics , 2010, 1010.4056.

[2]  Chi Xiong,et al.  Cavity piezooptomechanics: Piezoelectrically excited, optically transduced optomechanical resonators , 2013 .

[3]  E. Lucero,et al.  Computing prime factors with a Josephson phase qubit quantum processor , 2012, Nature Physics.

[4]  C. Xiong,et al.  Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics , 2012, 1210.0975.

[5]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[6]  S. Deleglise,et al.  Optomechanically Induced Transparency , 2011 .

[7]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[8]  Oskar Painter,et al.  Coherent optical wavelength conversion via cavity optomechanics , 2012, Nature Communications.

[9]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[10]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[11]  Ying-Dan Wang,et al.  Using interference for high fidelity quantum state transfer in optomechanics. , 2011, Physical review letters.

[12]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[13]  Shimon Kolkowitz,et al.  Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit , 2012, Science.

[14]  S. Deleglise,et al.  Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2012, CLEO 2012.

[15]  A N Cleland,et al.  Superconducting qubit storage and entanglement with nanomechanical resonators. , 2004, Physical review letters.

[16]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[17]  T. Alegre Electromagnetically Induced Transparency and Slow Light with Optomechanics , 2012 .

[18]  D. Hunger,et al.  Realization of an optomechanical interface between ultracold atoms and a membrane. , 2011, Physical Review Letters.

[19]  Lin Tian,et al.  Adiabatic state conversion and pulse transmission in optomechanical systems. , 2011, Physical review letters.

[20]  O. Painter,et al.  A chip-scale integrated cavity-electro-optomechanics platform. , 2011, Optics express.

[21]  P. Zoller,et al.  Optomechanical quantum information processing with photons and phonons. , 2012, Physical review letters.

[22]  Hailin Wang,et al.  Optomechanical Dark Mode , 2012, Science.

[23]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[24]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[25]  P. Zoller,et al.  A quantum spin transducer based on nanoelectromechanical resonator arrays , 2009, 0908.0316.

[26]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[27]  Oskar Painter,et al.  Proposal for an optomechanical traveling wave phonon–photon translator , 2010, 1009.3529.

[28]  T. A. Palomaki,et al.  Coherent state transfer between itinerant microwave fields and a mechanical oscillator , 2012, Nature.

[29]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.