A regularity model-based multiobjective estimation of distribution algorithm with reducing redundant cluster operator

A regularity model-based multiobjective estimation of distribution algorithm (RM-MEDA) has been proposed for solving continuous multiobjective optimization problems with variable linkages. RM-MEDA is a kind of estimation of distribution algorithms and, therefore, modeling plays a critical role. In RM-MEDA, the population is split into several clusters to build the model. Moreover, the fixed number of clusters is recommended in RM-MEDA when solving different kinds of problems. However, based on our experiments, we find that the number of clusters is problem-dependent and has a significant effect on the performance of RM-MEDA. Motivated by the above observation, in this paper we improve the clustering process and propose a reducing redundant cluster operator (RRCO) to build more precise model during the evolution. By combining RRCO with RM-MEDA, we present an improved version of RM-MEDA, named IRM-MEDA. In this paper, we also construct four additional continuous multiobjective optimization test instances. The experimental results have shown that IRM-MEDA outperforms RM-MEDA in terms of efficiency and effectiveness. In particular, IRM-MEDA performs on average 31.67% faster than RM-MEDA.

[1]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[2]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[3]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[4]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[5]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[6]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[7]  Qguhm -DVNLHZLF,et al.  On the performance of multiple objective genetic local search on the 0 / 1 knapsack problem . A comparative experiment , 2000 .

[8]  C. A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Computational Intelligence Magazine.

[9]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[10]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[11]  Keivan Ghoseiri,et al.  An ant colony optimization algorithm for the bi-objective shortest path problem , 2010, Appl. Soft Comput..

[12]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[13]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[14]  Maoguo Gong,et al.  Research on Evolutionary Multi-Objective Optimization Algorithms: Research on Evolutionary Multi-Objective Optimization Algorithms , 2009 .

[15]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[16]  Qingfu Zhang,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of , 2022 .

[17]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[18]  Kirsten Schmieder,et al.  Registration of CT and Intraoperative 3-D Ultrasound Images of the Spine Using Evolutionary and Gradient-Based Methods , 2008, IEEE Transactions on Evolutionary Computation.

[19]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[20]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[21]  Zhuhong Zhang,et al.  Immune optimization algorithm for constrained nonlinear multiobjective optimization problems , 2007, Appl. Soft Comput..

[22]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[23]  Frank Neumann,et al.  Analyzing Hypervolume Indicator Based Algorithms , 2008, PPSN.

[24]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[25]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[26]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[27]  R. Soland,et al.  Multiple‐attribute decision making with partial information: The comparative hypervolume criterion , 1978 .

[28]  Yang Dong,et al.  Research on Evolutionary Multi-Objective Optimization Algorithms , 2009 .

[29]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[30]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[31]  Nanda Kambhatla,et al.  Dimension Reduction by Local Principal Component Analysis , 1997, Neural Computation.

[32]  Yuping Wang,et al.  Multiobjective programming using uniform design and genetic algorithm , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[33]  Enrique Alba,et al.  A Study of Convergence Speed in Multi-objective Metaheuristics , 2008, PPSN.

[34]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[35]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[36]  Carlos A. Coello Coello,et al.  Pareto-adaptive -dominance , 2007, Evolutionary Computation.

[37]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[38]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[39]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[40]  Xingyuan Wang,et al.  Image encryption using DNA complementary rule and chaotic maps , 2012, Appl. Soft Comput..

[41]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[42]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[43]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[44]  K. S. Swarup,et al.  Multi-objective biogeography based optimization for optimal PMU placement , 2012, Appl. Soft Comput..

[45]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.