Algebraic Algorithms

This is a preliminary version of a Chapter on Algebraic Algorithms in the upcoming Computing Handbook Set Computer Science (Volume I), CRC Press/Taylor and Francis Group. Algebraic algorithms deal with numbers, vectors, matrices, polynomials, formal power series, exponential and differential polynomials, rational functions, algebraic sets, curves and surfaces. In this vast area, manipulation with matrices and polynomials is most fundamental for modern computations in Sciences, Engineering, and Signal and Image Processing. They include the solution of a polynomial equation and linear and polynomial systems of equations, univariate and multivariate polynomial evaluation, interpolation, factorization and decompositions, rational interpolation, computing matrix factorization and decompositions (which in turn include various triangular and orthogonal factorizations such as LU, PLU, QR, QRP, QLP, CS, LR, Cholesky factorizations and eigenvalue and singular value decompositions), computation of the matrix characteristic and minimal polynomials, determinants, Smith and Frobenius normal forms, ranks, and (generalized) inverses, univariate and multivariate polynomial resultants, Newton’s polytopes, greatest common divisors, and least common multiples as well as manipulation with truncated series and algebraic sets. Such problems can be solved based on the error-free symbolic computations with infinite precision. The computer library GMP and computer algebra

[1]  Victor Y. Pan,et al.  Compact Multigrid , 1992, SIAM J. Sci. Comput..

[2]  Victor Y. Pan,et al.  How to Multiply Matrices Faster , 1984, Lecture Notes in Computer Science.

[3]  Michael T. Heath,et al.  Parallel Algorithms for Sparse Linear Systems , 1991, SIAM Rev..

[4]  Victor Y. Pan,et al.  An Improved Newton Iteration for the Generalized Inverse of a Matrix, with Applications , 1991, SIAM J. Sci. Comput..

[5]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[6]  D. Coppersmith Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .

[7]  David H. Bailey,et al.  Analysis of PSLQ, an integer relation finding algorithm , 1999, Math. Comput..

[8]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[9]  Kenneth J. Giuliani Factoring Polynomials with Rational Coeecients , 1998 .

[10]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[11]  Erich Kaltofen,et al.  Solving systems of nonlinear polynomial equations faster , 1989, ISSAC '89.

[12]  E. Chionh Base points, resultants, and the implicit representation of rational surfaces , 1990 .

[13]  J. Ortega,et al.  Solution of Partial Differential Equations on Vector and Parallel Computers , 1987 .

[14]  Deepak Kapur,et al.  Algebraic and geometric reasoning using Dixon resultants , 1994, ISSAC '94.

[15]  Erich Kaltofen,et al.  Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..

[16]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[17]  V. Pan Sequential and parallel complexity of approximate evaluation of polynomial zeros , 1987 .

[18]  Victor Y. Pan,et al.  Complexity of Algorithms for Linear Systems of Equations , 1991 .

[19]  Victor S. Miller,et al.  Factoring Polynomials via Relation-Finding , 1992, ISTCS.

[20]  R. Tarjan,et al.  The analysis of a nested dissection algorithm , 1987 .

[21]  Jack J. Dongarra,et al.  Matrix Eigensystem Routines — EISPACK Guide Extension , 1977, Lecture Notes in Computer Science.

[22]  D. Cantor,et al.  A new algorithm for factoring polynomials over finite fields , 1981 .

[23]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[24]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[25]  Deepak Kapur,et al.  Geometry theorem proving using Hilbert's Nullstellensatz , 1986, SYMSAC '86.

[26]  L. Zoretti Sur la résolution des équations numériques , 1909 .

[27]  Rodney W. Forcade,et al.  Multidimensional Euclidean algorithms. , 1982 .

[28]  André Heck Introduction to Computer Algebra , 1993 .

[29]  Dinesh Manocha,et al.  Conformational analysis of molecular chains using nano-kinematics , 1995, Comput. Appl. Biosci..

[30]  Victor Y. Pan,et al.  Some Recent Algebraic/numerical Algorithms , 1998 .

[31]  Victor Y. Pan,et al.  Faster solution of the key equation for decoding BCH error-correcting codes , 1997, STOC '97.

[32]  M. Mignotte,et al.  Polynomials: An Algorithmic Approach , 1999 .

[33]  B. Mourrain,et al.  Algebraic Approach of Residues and Applications , 1996 .

[34]  V. Pan On computations with dense structured matrices , 1990 .

[35]  Victor Y. Pan,et al.  The structure of sparse resultant matrices , 1997, ISSAC.

[36]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[37]  V. Pan On Approximating Complex Polynomial Zeros: Modified Quadtree (Weyl's) Construction and Improved Newton's Iteration , 1996 .

[38]  M. A. Jenkins,et al.  A three-stage variable-shift iteration for polynomial zeros and its relation to generalized rayleigh iteration , 1970 .

[39]  B. Mourrain,et al.  Solving special polynomial systems by using structured matrices and algebraic residues , 1997 .

[40]  K. Madsen A root-finding algorithm based on Newton's method , 1973 .

[41]  Erich Kaltofen,et al.  Factoring high-degree polynomials by the black box Berlekamp algorithm , 1994, ISSAC '94.

[42]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[43]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[44]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[45]  V. Pan How can we speed up matrix multiplication , 1984 .

[46]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[47]  Erich Kaltofen,et al.  A generalized class of polynomials that are hard to factor , 1981, SYMSAC '81.

[48]  B. S. Garbow,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[49]  Dinesh Manocha,et al.  Efficient techniques for multipolynomial resultant algorithms , 1991, ISSAC '91.

[50]  B. Roth,et al.  Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators , 1995 .

[51]  Victor Y. Pan,et al.  Parallel complexity of tridiagonal symmetric Eigenvalue problem , 1991, SODA '91.

[52]  Erich Kaltofen,et al.  Improved Sparse Multivariate Polynomial Interpolation Algorithms , 1988, ISSAC.

[53]  V. Pan Optimal and nearly optimal algorithms for approximating polynomial zeros , 1996 .

[54]  Victor Y. Pan,et al.  Work-Preserving Speed-Up of Parallel Matrix Computations , 1995, SIAM J. Comput..

[55]  Kenneth L. Clarkson,et al.  Safe and effective determinant evaluation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[56]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[57]  Erich Kaltofen,et al.  Parallel algorithms for matrix normal forms , 1990 .

[58]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[59]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[60]  KaltofenErich Greatest common divisors of polynomials given by straight-line programs , 1988 .

[61]  Victor Y. Pan,et al.  Strassen's algorithm is not optimal trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix operations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[62]  J. Canny,et al.  An Algorithm for the Newton Resultant , 1993 .

[63]  James Renegar On the Worst-Case Arithmetic Complexity of Approximating Zeros of Systems of Polynomials , 1989, SIAM J. Comput..

[64]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[65]  Julian D. Laderman,et al.  On practical algorithms for accelerated matrix multiplication , 1992 .

[66]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[67]  Thomas Kailath,et al.  Fast reliable algorithms for matrices with structure , 1999 .

[68]  Bruno Buchberger,et al.  A note on the complexity of constructing Gröbner-Bases , 1983, EUROCAL.

[69]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[70]  Allan Borodin,et al.  The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.

[71]  B. David Saunders,et al.  Sparse Polynomial Interpolation in Nonstandard Bases , 1995, SIAM J. Comput..

[72]  Victor Y. Pan,et al.  Fast and Efficient Parallel Solution of Sparse Linear Systems , 1993, SIAM J. Comput..

[73]  Erich Kaltofen,et al.  Polynomial Factorization 1987-1991 , 1992, LATIN.

[74]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[75]  John F. Canny,et al.  Generalized Characteristic Polynomials , 1988, ISSAC.

[76]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[77]  Michael B. Monagan,et al.  A Heuristic Irreducibility Test for Univariate Polynomials , 1992, J. Symb. Comput..

[78]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[79]  Erich Kaltofen,et al.  Subquadratic-time factoring of polynomials over finite fields , 1998, Math. Comput..

[80]  David R. Musser,et al.  Multivariate Polynomial Factorization , 1975, JACM.

[81]  Daniel Lazard,et al.  Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..

[82]  V. Pan,et al.  Polynomial and matrix computations (vol. 1): fundamental algorithms , 1994 .

[83]  P. G. Walsh,et al.  A quantitative version of Runge's theorem on diophantine equations , 1992 .

[84]  Alan George,et al.  Computer Solution of Large Sparse Positive Definite , 1981 .

[85]  Ioannis Z. Emiris,et al.  On the Complexity of Sparse Elimination , 1996, J. Complex..

[86]  H. Zassenhaus On Hensel factorization, I , 1969 .

[87]  E. Bareiss Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .

[88]  Victor Y. Pan,et al.  Sign Determination in Residue Number Systems , 1999, Theor. Comput. Sci..

[89]  Erich Kaltofen,et al.  FOXBOX: a system for manipulating symbolic objects in black box representation , 1998, ISSAC '98.

[90]  Bernard Mourrain,et al.  Matrices in Elimination Theory , 1999, J. Symb. Comput..

[91]  Ioannis Z. Emiris,et al.  Sparse elimination and applications in kinematics , 1994 .

[92]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[93]  E. Berlekamp Factoring polynomials over large finite fields* , 1971, SYMSAC '71.

[94]  Victor Y. Pan,et al.  Univariate polynomial division with a remainder by means of evaluation and interpolation , 1991, Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing.

[95]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[96]  Victor Y. Pan,et al.  Polynomial division and its computational complexity , 1986, J. Complex..

[97]  E. Hansen,et al.  Some modifications of Laguerre's method , 1977 .

[98]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[99]  Victor Y. Pan,et al.  Processor efficient parallel solution of linear systems over an abstract field , 1991, SPAA '91.

[100]  James Renegar,et al.  On the worst-case arithmetic complexity of approximating zeros of polynomials , 1987, J. Complex..

[101]  B. David Saunders,et al.  On computing sparse shifts for univariate polynomials , 1994, ISSAC '94.

[102]  Erich Kaltofen Effective Noether irreducibility forms and applications , 1991, STOC '91.

[103]  V. Pan Numerical Computation of a Polynomial GCD and Extensions , 1996 .

[104]  Dinesh Manocha,et al.  Numeric-symbolic algorithms for evaluating one-dimensional algebraic sets , 1995, ISSAC '95.

[105]  Victor Y. Pan,et al.  Parallel Computation of Polynomial GCD and Some Related Parallel Computations over Abstract Fields , 1996, Theor. Comput. Sci..

[106]  Victor Y. Pan,et al.  Processor-efficient parallel solution of linear systems. II. The positive characteristic and singular cases , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[107]  V. Pan Parallel computation of a Krylov matrix for a sparse and structured input , 1995 .

[108]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[109]  Robert E. Tarjan,et al.  A Unified Approach to Path Problems , 1981, JACM.

[110]  D. Rose,et al.  Generalized nested dissection , 1977 .

[111]  David Bailey,et al.  On the rapid computation of various polylogarithmic constants , 1997, Math. Comput..

[112]  Stefano Serra Capizzano,et al.  Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..

[113]  I. Emiris,et al.  Certified approximate univariate GCDs , 1997 .

[114]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[115]  Erich Kaltofen,et al.  Fast polynomial factorization over high algebraic extensions of finite fields , 1997, ISSAC.

[116]  Y. N. Lakshman,et al.  Elimination methods: an introduction , 1992 .

[117]  Michel Minoux,et al.  Graphs and Algorithms , 1984 .

[118]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[119]  I. Emiris An E cient Algorithm for the Sparse Mixed Resultant John Canny ? and , 1993 .

[120]  John R. Gilbert,et al.  Highly Parallel Sparse Cholesky Factorization , 1992, SIAM J. Sci. Comput..

[121]  Erich Kaltofen,et al.  On the complexity of computing grobner bases for zero-dimensional polynomial ideals , 1990 .

[122]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[123]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[124]  Franz Winkler,et al.  Polynomial Algorithms in Computer Algebra , 1996, Texts and Monographs in Symbolic Computation.

[125]  Victor Y. Pan,et al.  Complexity of Computations with Matrices and Polynomials , 1992, SIAM Rev..

[126]  Victor Y. Pan,et al.  Complexity of Parallel Matrix Computations , 1987, Theor. Comput. Sci..

[127]  Deepak Kapur,et al.  Comparison of various multivariate resultant formulations , 1995, ISSAC '95.

[128]  Jeffrey D. Smith,et al.  Design and Analysis of Algorithms , 2009, Lecture Notes in Computer Science.

[129]  Victor Y. Pan,et al.  Computing the Determinant and the Characteristic Polynomial of a Matrix via Solving Linear Systems of Equations , 1988, Inf. Process. Lett..

[130]  Daniel Reischert Asymptotically fast computation of subresultants , 1997, ISSAC.

[131]  D. Manocha,et al.  Algebraic and numeric techniques in modeling and robotics , 1992 .

[132]  Erich Kaltofen,et al.  Greatest common divisors of polynomials given by straight-line programs , 1988, JACM.

[133]  L. Foster Generalizations of Laguerre’s Method: Higher Order Methods , 1981 .

[134]  Albert R. Meyer,et al.  The Complexity of the Finite Containment Problem for Petri Nets , 1981, JACM.

[135]  John Michael McNamee An updated supplementary bibliography on roots of polynomials , 1999 .

[136]  Mark Giesbrecht,et al.  Nearly Optimal Algorithms for Canonical Matrix Forms , 1995, SIAM J. Comput..

[137]  Jack Dongarra,et al.  Numerical Linear Algebra for High-Performance Computers , 1998 .

[138]  Maurice Mignotte,et al.  Mathematics for computer algebra , 1991 .

[139]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[140]  J. Jouanolou Formes d'inertie et résultant: un formulaire , 1997 .

[141]  J. Faugère,et al.  Combinatorial classes of parallel manipulators , 1995 .

[142]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[143]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[144]  John F. Canny,et al.  An Efficient Algorithm for the Sparse Mixed Resultant , 1993, AAECC.

[145]  ChallengesPaul ZimmermannInria Lorrainezimmermann Polynomial Factorization , 1996 .

[146]  Erich Kaltofen,et al.  Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[147]  J. McNamee A bibliography on roots of polynomials , 1993 .

[148]  Victor Y. Pan Solving Polynomials with Computers , 1998 .

[149]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[150]  James H. Davenport,et al.  Computer Algebra: Systems and Algorithms for Algebraic Computation , 1988 .

[151]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[152]  Dima Grigoriev,et al.  Algorithms for Computing Sparse Shifts for Multivariate Polynomials , 1995, ISSAC '95.

[153]  Victor Y. Pan,et al.  Newton's iteration for structured matrices , 1999 .

[154]  E Spedicato Computer algorithms for solving linear algebraic equations : the state of the art , 1991 .

[155]  Erich Kaltofen,et al.  On computing greatest common divisors with polynomials given by black boxes for their evaluations , 1995, ISSAC '95.

[156]  John F. Canny,et al.  Efficient Inceremtal Algorithms for the Sparse Resultant and the Mixed Volume , 1995, J. Symb. Comput..

[157]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[158]  Stephen M. Watt,et al.  The singular value decomposition for polynomial systems , 1995, ISSAC '95.

[159]  Victor Shoup,et al.  A New Polynomial Factorization Algorithm and its Implementation , 1995, J. Symb. Comput..

[160]  Bruno Buchberger,et al.  A theoretical basis for the reduction of polynomials to canonical forms , 1976, SIGS.

[161]  M. J. Quinn,et al.  Parallel Computing: Theory and Practice , 1994 .

[162]  Arnold Schönhage,et al.  The fundamental theorem of algebra in terms of computational complexity - preliminary report , 1982 .

[163]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[164]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[165]  Erich Kaltofen,et al.  On randomized Lanczos algorithms , 1997, ISSAC.