Using Galois Ideals for Computing Relative Resolvents

In this paper we show that some ideals which occur in Galois theory are generated by triangular sets of polynomials. This geometric property seems important for the development of symbolic methods in Galois theory. It may and should be exploited in order to obtain more efficient algorithms, and it enables us to present a new algebraic method for computing relative resolvents which works with any polynomial invariant.

[1]  R. Stauduhar The Determination of Galois Groups , 1973 .

[2]  Marc Moreno Triangular Sets for Solving Polynomial Systems: a Comparative Implementation of Four Methods , 1999 .

[3]  Peter Henrici,et al.  Automatic Computations with Power Series , 1956, JACM.

[4]  Antoine Colin Formal Computation of Galois Groups with Relative Resolvents , 1995, AAECC.

[5]  Lagrange resolventsJean-Marie ARNAUDIES Lagrange Resolvents , 1996 .

[6]  Annick Valibouze Symbolic Computation with Symmetric Polynomials an Extension to MACSYMA , 1989, Computers and Mathematics.

[7]  John McKay,et al.  Symmetric functions, m -sets, and Galois groups , 1994 .

[8]  Yves Eichenlaub,et al.  Problèmes effectifs de théorie de Galois en degrés 8 à 11 , 1996 .

[9]  Annick Valibouze Computation of the Galois Groups of the Resolvent Factors for the Direct and Inverse Galois Problems , 1995, AAECC.

[10]  Annick Valibouze,et al.  Calcul de résolvantes avec les modules de Cauchy , 1999, Exp. Math..

[11]  Leonard H. Soicher The computation of Galois groups , 1981 .

[12]  Ines Abdeljaouad Calculs d'invariants primitifs de groupes finis , 1999, RAIRO Theor. Informatics Appl..

[13]  K. Yokoyama,et al.  A modular method for computing the Galois groups of polynomials , 1997 .

[14]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..

[15]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[16]  Kurt Girstmair On invariant polynomials and their application in field theory , 1987 .

[17]  H. Darmon,et al.  Computational verification of M11 and M12 as galois groups over Q , 1989 .

[18]  Leonard H. Soicher,et al.  Computing Galois groups over the rationals , 1985 .

[19]  Jürgen Klüners,et al.  Galois Group Computation for Rational Polynomials , 2000, J. Symb. Comput..

[20]  Marc Moreno Maza,et al.  Triangular Sets for Solving Polynomial Systems: a Comparative Implementation of Four Methods , 1999, J. Symb. Comput..

[21]  G. Butler,et al.  The transitive groups of degree up to eleven , 1983 .

[22]  Frédéric Lehobey Resolvent computations by resultants without extraneous powers , 1997, ISSAC.

[23]  Annick Valibouze,et al.  R'esolvantes Et Fonctions Sym'etriques , 1989 .

[24]  Annick Valibouze,et al.  Étude des relations algébriques entre les racines d'un polynôme d'une variable , 1999 .

[25]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[26]  Société mathématique de Belgique Bulletin of the Belgian Mathematical Society, Simon Stevin , 1994 .

[27]  P. Aubry,et al.  Ensembles triangulaires de polynomes et resolution de systemes algebriques. Implantation en axiom , 1999 .

[28]  Daniel Lazard,et al.  A new method for solving algebraic systems of positive dimension , 1991, Discret. Appl. Math..