Beyond Consistent Reconstructions: Optimality and Sharp Bounds for Generalized Sampling, and Application to the Uniform Resampling Problem

Generalized sampling is a recently developed linear framework for sampling and reconstruction in separable Hilbert spaces. It allows one to recover any element in any finite-dimensional subspace given finitely many of its samples with respect to an arbitrary basis or frame. Unlike more common approaches for this problem, such as the consistent reconstruction technique of Eldar and others, it leads to numerical methods possessing both guaranteed stability and accuracy. The purpose of this paper is twofold. First, we give a complete and formal analysis of generalized sampling, the main result of which being the derivation of new, sharp bounds for the accuracy and stability of this approach. Such bounds improve upon those given previously and result in a necessary and sufficient condition, the stable sampling rate, which guarantees a priori a good reconstruction. Second, we address the topic of optimality. Under some assumptions, we show that generalized sampling is an optimal, stable method. Correspondingly...

[1]  J. Zerubia,et al.  A Generalized Sampling Theory without bandlimiting constraints , 1998 .

[2]  A. J. Jerri Correction to "The Shannon sampling theorem—Its various extensions and applications: A tutorial review" , 1979 .

[3]  A. Aldroubi Oblique projections in atomic spaces , 1996 .

[4]  Gabriele Steidl,et al.  Shearlet coorbit spaces and associated Banach frames , 2009 .

[5]  Yonina C. Eldar Sampling with Arbitrary Sampling and Reconstruction Spaces and Oblique Dual Frame Vectors , 2003 .

[6]  Roland Potthast,et al.  Convergence and Numerics of a Multisection Method for Scattering by Three-Dimensional Rough Surfaces , 2008, SIAM J. Numer. Anal..

[7]  Marko Lindner,et al.  Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method , 2006 .

[8]  Yonina C. Eldar,et al.  A minimum squared-error framework for generalized sampling , 2006, IEEE Transactions on Signal Processing.

[9]  D Rosenfeld,et al.  An optimal and efficient new gridding algorithm using singular value decomposition , 1998, Magnetic resonance in medicine.

[10]  Daniel Rosenfeld,et al.  New approach to gridding using regularization and estimation theory , 2002, Magnetic resonance in medicine.

[11]  Michael Unser,et al.  Generalized sampling: stability and performance analysis , 1997, IEEE Trans. Signal Process..

[12]  A F Laine,et al.  Wavelets in temporal and spatial processing of biomedical images. , 2000, Annual review of biomedical engineering.

[13]  M. Do,et al.  Directional multiscale modeling of images using the contourlet transform , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[14]  Bob S. Hu,et al.  Fast Spiral Coronary Artery Imaging , 1992, Magnetic resonance in medicine.

[15]  Ben Adcock,et al.  Generalized sampling: extension to frames and inverse and ill-posed problems , 2013 .

[16]  Ben Adcock,et al.  REDUCED CONSISTENCY SAMPLING IN HILBERT SPACES , 2011 .

[17]  Dennis M. Healy,et al.  Two applications of wavelet transforms in magnetic resonance imaging , 1992, IEEE Trans. Inf. Theory.

[18]  Thierry Blu,et al.  Extrapolation and Interpolation) , 2022 .

[19]  Don Buckholtz Hilbert space idempotents and involutions , 1999 .

[20]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[21]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[22]  Ben Adcock,et al.  Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon , 2010, 1011.6625.

[23]  Anders C. Hansen,et al.  On the Solvability Complexity Index, the n-pseudospectrum and approximations of spectra of operators , 2011 .

[24]  Anne Gelb,et al.  Recovering Exponential Accuracy from Non-harmonic Fourier Data Through Spectral Reprojection , 2011, Journal of Scientific Computing.

[25]  Michael Unser,et al.  Consistent Sampling and Signal Recovery , 2007, IEEE Transactions on Signal Processing.

[26]  Thomas Strohmer,et al.  QUANTITATIVE ESTIMATES FOR THE FINITE SECTION METHOD , 2006 .

[27]  Anders C. Hansen,et al.  On the approximation of spectra of linear operators on Hilbert spaces , 2008 .

[28]  Rosemary A. Renaut,et al.  On Reconstruction from Non-uniform Spectral Data , 2010, J. Sci. Comput..

[29]  J. A. Parker,et al.  Comparison of Interpolating Methods for Image Resampling , 1983, IEEE Transactions on Medical Imaging.

[30]  J. Steinberg Oblique projections in Hilbert spaces , 2000 .

[31]  Ben Adcock,et al.  A Stability Barrier for Reconstructions from Fourier Samples , 2012, SIAM J. Numer. Anal..

[32]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[33]  L. Schumaker,et al.  Approximation theory XIII : San Antonio 2010 , 2012 .

[34]  Ben Adcock,et al.  A Generalized Sampling Theorem for Stable Reconstructions in Arbitrary Bases , 2010, 1007.1852.

[35]  Aswin C. Sankaranarayanan,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[36]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[37]  Marco Righero,et al.  An introduction to compressive sensing , 2009 .

[38]  Daniel B. Szyld,et al.  The many proofs of an identity on the norm of oblique projections , 2006, Numerical Algorithms.

[39]  Rik Van de Walle,et al.  Reconstruction of MR images from data acquired on a general nonregular grid by pseudoinverse calculation , 2000, IEEE Transactions on Medical Imaging.

[40]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[41]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[42]  A. Böttcher Infinite matrices and projection methods , 1995 .

[43]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[44]  Yonina C. Eldar,et al.  Robust and Consistent Sampling , 2009, IEEE Signal Processing Letters.

[45]  Ole Christensen,et al.  Frames and the Projection Method , 1993 .

[46]  Wai-Shing Tang,et al.  Oblique projections, biorthogonal Riesz bases and multiwavelets in Hilbert spaces , 1999 .

[47]  Gitta Kutyniok,et al.  The Uncertainty Principle Associated with the Continuous Shearlet Transform , 2008, Int. J. Wavelets Multiresolution Inf. Process..

[48]  Massimo Fornasier,et al.  Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.

[49]  Ben Adcock,et al.  Generalized sampling and the stable and accurate reconstruction of piecewise analytic functions from their Fourier coefficients , 2014, Math. Comput..

[50]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[51]  Yonina C. Eldar,et al.  General Framework for Consistent Sampling in Hilbert Spaces , 2005, Int. J. Wavelets Multiresolution Inf. Process..

[52]  Steffen Roch,et al.  C* - Algebras and Numerical Analysis , 2000 .

[53]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[54]  Yonina C. Eldar,et al.  Beyond bandlimited sampling , 2009, IEEE Signal Processing Magazine.

[55]  Stéphane Jaffard,et al.  A density criterion for frames of complex exponentials. , 1991 .

[56]  J. Weaver,et al.  Wavelet‐encoded MR imaging , 1992, Magnetic resonance in medicine.

[57]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[58]  E. Candès,et al.  Recovering edges in ill-posed inverse problems: optimality of curvelet frames , 2002 .

[59]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[60]  Karlheinz Gröchenig,et al.  Pseudospectral Fourier reconstruction with the modified Inverse Polynomial Reconstruction Method , 2010, J. Comput. Phys..

[61]  Michael Unser,et al.  A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..

[62]  Wang-Q Lim,et al.  Compactly Supported Shearlets , 2010, 1009.4359.

[63]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[64]  Yonina C. Eldar Sampling Without Input Constraints: Consistent Reconstruction in Arbitrary Spaces , 2004 .