Uncertainty analysis of the hydrodynamic coefficients estimation of a nonlinear manoeuvring model based on planar motion mechanism tests

Abstract Uncertainty analysis of the identified hydrodynamic coefficients of a nonlinear manoeuvring model is presented in this paper. The classical parameter estimation method, Least Square, is briefly introduced, and the uncertainty of the hydrodynamic coefficients due to the noise in the measured data is analysed using singular value decomposition. Then, two methods, truncated singular values decomposition and Tikhonov regularization, are introduced to diminish the uncertainty. A nonlinear manoeuvring mathematical model of a marine surface ship is derived using Lagrange's method. The dimensionless hydrodynamic coefficients are obtained using the Least Squares method, truncated singular values decomposition and Tikhonov regularization with Planar Motion Mechanism test data. The validation process is carried out to test the performance and accuracy of the resulting nonlinear manoeuvring models. The result shows that identification of the uncertain parameters using the truncated singular values decomposition and Tikhonov regularization resulted in good estimating the parameters and significantly diminish the uncertainty.

[1]  Denglong Ma,et al.  Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm. , 2017, Journal of hazardous materials.

[2]  Florian Sprenger,et al.  Time Domain Simulation Model for Research Vessel Gunnerus , 2015 .

[3]  C. Guedes Soares,et al.  Dynamic model of manoeuvrability using recursive neural networks , 2003 .

[4]  Per Christian Hansen,et al.  Computing Truncated Singular Value Decomposition Least Squares Solutions by Rank Revealing QR-Factorizations , 1990, SIAM J. Sci. Comput..

[5]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[6]  Carlos Guedes Soares,et al.  Software architecture of an interface for three-dimensional collision handling in maritime Virtual Environments , 2015, Simul..

[7]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[8]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[9]  Karl Johan Åström,et al.  Identification of ship steering dynamics , 1976, Autom..

[10]  Thor I. Fossen,et al.  On the Properties of the Nonlinear Ship Equations of Motion , 2000 .

[11]  ProblemsPer Christian HansenDepartment The L-curve and its use in the numerical treatment of inverse problems , 2000 .

[12]  M A Abkowitz,et al.  MEASUREMENT OF HYDRODYNAMIC CHARACTERISTICS FROM SHIP MANEUVERING TRIALS BY SYSTEM IDENTIFICATION , 1980 .

[13]  Zao-Jian Zou,et al.  Nonparametric identification of nonlinear ship roll motion by using the motion response in irregular waves , 2018 .

[14]  Vladimir Vapnik,et al.  Support-vector networks , 2004, Machine Learning.

[15]  Andrew Ross,et al.  Identification of Nonlinear Manoeuvring Models for Marine Vessels Using Planar Motion Mechanism Tests , 2015 .

[16]  C. Guedes Soares,et al.  Real-Time Parameter Estimation of Nonlinear Vessel Steering Model Using Support Vector Machine , 2018 .

[17]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[18]  Peter Rex Johnston,et al.  Computational Inverse Problems in Electrocardiography , 2001 .

[19]  Weilin Luo,et al.  Parameter Identifiability of Ship Manoeuvring Modeling Using System Identification , 2016 .

[20]  T. A. Netto,et al.  Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE , 1998 .

[21]  Xu Han,et al.  Probability assessments of identified parameters for stochastic structures using point estimation method , 2016, Reliab. Eng. Syst. Saf..

[22]  Lokukaluge P. Perera,et al.  System Identification of Vessel Steering With Unstructured Uncertainties by Persistent Excitation Maneuvers , 2016, IEEE Journal of Oceanic Engineering.

[23]  Torsten Söderström,et al.  Comparing some classes of bias-compensating least squares methods , 2013, Autom..

[24]  Asgeir J. Sørensen,et al.  Identification of Dynamically Positioned Ships , 1995 .

[25]  Lokukaluge P. Perera,et al.  Maritime Traffic Monitoring Based on Vessel Detection, Tracking, State Estimation, and Trajectory Prediction , 2012, IEEE Transactions on Intelligent Transportation Systems.

[26]  Xu Han,et al.  An efficient method to reduce ill-posedness for structural dynamic load identification , 2017 .

[27]  Asgeir J. Sørensen,et al.  Adaptive Wave Filtering for Dynamic Positioning of Marine Vessels using Maximum Likelihood Identification: Theory and Experiments , 2013 .

[28]  Asgeir J. Sørensen,et al.  Neural network augmented identification of underwater vehicle models , 2004 .

[29]  C. Guedes Soares,et al.  Interactive 3D desktop ship simulator for testing and training offloading manoeuvres , 2015 .

[30]  Asgeir J. Sørensen,et al.  Identification of Dynamically Positioned Ships , 1995 .

[31]  C. Guedes Soares,et al.  Vector Field Path Following for Surface Marine Vessel and Parameter Identification Based on LS-SVM , 2016 .

[32]  Andrew Ross,et al.  Nonlinear Manoeuvring Models for Ships: A Lagrangian Approach , 2008 .

[33]  Wei-yuan Hwang Application of system identification to ship maneuvering , 1980 .

[34]  Lokukaluge P. Perera,et al.  System Identification of Nonlinear Vessel Steering , 2015 .

[35]  C. Guedes Soares,et al.  Manoeuvring simulation of catamaran by using implicit models based on support vector machines , 2014 .

[36]  C. Guedes Soares,et al.  Estimation of Hydrodynamic Coefficients of a Nonlinear Manoeuvring Mathematical Model With Free-Running Ship Model Tests , 2018, International Journal of Maritime Engineering Vol 160 2018 A3.

[37]  C. Guedes Soares,et al.  Mathematical models for simulation of manoeuvring performance of ships , 2012 .

[38]  Asgeir J. Sørensen,et al.  Output feedback motion control system for observation class ROVs based on a high-gain state observer: Theoretical and experimental results , 2015 .

[39]  Gene H. Golub,et al.  Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.

[40]  Andrew Ross,et al.  IDENTIFICATION OF NONLINEAR VISCOUS DAMPING FOR MARINE VESSELS , 2006 .

[41]  Tristan Perez,et al.  A novel manoeuvering model based on low-aspect-ratio lift theory and Lagrangian mechanics , 2007 .

[42]  Lennart Ljung,et al.  Implementation of algorithms for tuning parameters in regularized least squares problems in system identification , 2013, Autom..

[43]  Thor I. Fossen,et al.  Handbook of Marine Craft Hydrodynamics and Motion Control , 2011 .

[44]  C. Guedes Soares,et al.  Parameter Identification of Ship Maneuvering Model Based on Support Vector Machines and Particle Swarm Optimization , 2016 .

[45]  C. Guedes Soares,et al.  An Optimized Energy-Efficient Path Following Algorithm for Underactuated Marine Surface Ship Model , 2018 .

[46]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[47]  W. L. Luo,et al.  Parametric Identification of Ship Maneuvering Models by Using Support Vector Machines , 2009 .

[48]  Gabriel Oliver,et al.  Intervention AUVs: The next challenge , 2015, Annu. Rev. Control..

[49]  A. G. Greenhill Analytical Mechanics , 1890, Nature.

[50]  Asgeir J. Sørensen,et al.  A survey of dynamic positioning control systems , 2011, Annu. Rev. Control..

[51]  C. Guedes Soares,et al.  Development of a multifactor regression model of ship maneuvering forces based on optimized captive-model tests , 2006 .

[52]  Xinyu Li,et al.  Measures to diminish the parameter drift in the modeling of ship manoeuvring using system identification , 2017 .

[53]  Gene H. Golub,et al.  Tikhonov Regularization and Total Least Squares , 1999, SIAM J. Matrix Anal. Appl..

[54]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[55]  C. Soares,et al.  An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests , 2014 .

[56]  Kensaku Nomoto,et al.  On the steering qualities of ships , 1956 .

[57]  G. Kirchhoff Ueber die Bewegung eines Rotationskörpers in einer Flüssigkeit. , 1870 .