High-resolution Spectroscopy Using Fabry–Perot Interferometer Arrays: An Application to Searches for O2 in Exoplanetary Atmospheres

We present a novel implementation for extremely high resolution spectroscopy using custom-designed Fabry Perot Interferometer (FPI) arrays. For a given telescope aperture at the seeing limited case, these arrays can achieve resolutions well in excess of ${\rm R\sim10^5}$ using optical elements orders of magnitude smaller in size than standard echelle spectrographs of similar resolution. We apply this method specifically to the search for molecular oxygen in exoplanetary atmospheres using the ${\rm O_2}$ A-band at 0.76 ${\rm \mu m}$, and show how a FPI array composed of $\sim10$ etalons with parameters optimized for this science case can record ${\rm R=3-5\,\cdot10^5}$ spectra covering the full ${\rm O_2}$ A-band. Using simulated observations of the atmosphere of a transiting nearby Earth-like planet, we show how observations with a FPI array coupled to a long-slit spectrograph can reduce the number of transit observations needed to produce a ${\rm 3\sigma}$ detection of ${\rm O_2}$ by $\sim30\%$ compared to observations with a ${\rm R=10^5}$ echelle spectrograph. This, in turn, leads to a decrease in an observing program duration of several years. The number of transits needed for a ${\rm 3\sigma}$ detection can be further reduced by increasing the efficiency of FPI arrays using dualons (an etalon with a buried reflective layer), and by coupling the FPI array to a dedicated spectrograph optimized for the ${\rm O_2}$ A-band.

[1]  M. Perryman,et al.  The Three-Dimensional Universe with Gaia , 2005 .

[2]  R. J. de Kok,et al.  Discovery of Water at High Spectral Resolution in the Atmosphere of 51 Peg b , 2017, 1701.07257.

[3]  Jeffrey D. Crane,et al.  The GMT-Consortium Large Earth Finder (G-CLEF): an optical Echelle spectrograph for the Giant Magellan Telescope (GMT) , 2016, Astronomical Telescopes + Instrumentation.

[4]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[5]  B. Scott Gaudi,et al.  iLocater: a diffraction-limited Doppler spectrometer for the Large Binocular Telescope , 2016, Astronomical Telescopes + Instrumentation.

[6]  Tilo Steinmetz,et al.  State of the Field: Extreme Precision Radial Velocities , 2016, 1602.07939.

[7]  Jeffrey D. Crane,et al.  The opto-mechanical design of the GMT-Consortium Large Earth Finder (G-CLEF) , 2016, Astronomical Telescopes + Instrumentation.

[8]  Simon Albrecht,et al.  The signature of orbital motion from the dayside of the planet τ Boötis b , 2012, Nature.

[9]  Nikole K. Lewis,et al.  An ultrahot gas-giant exoplanet with a stratosphere , 2017, Nature.

[10]  C. Jurgenson,et al.  EXPRES: a next generation RV spectrograph in the search for earth-like worlds , 2016, Astronomical Telescopes + Instrumentation.

[11]  Andrew Szentgyorgyi,et al.  The optical design of the G-CLEF Spectrograph: the first light instrument for the GMT , 2016, Astronomical Telescopes + Instrumentation.

[12]  Ross Zhelem,et al.  The MANIFEST prototyping design study , 2016, Astronomical Telescopes + Instrumentation.

[13]  Harland W. Epps,et al.  Hectochelle: A Multiobject Optical Echelle Spectrograph for the MMT , 2011 .

[14]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[15]  Mette Owner-Petersen,et al.  Very high-resolution spectroscopy for extremely large telescopes using pupil slicing and adaptive optics. , 2007, Optics express.

[16]  Andreas Seifahrt,et al.  A microlens-array based pupil slicer and double scrambler for MAROON-X , 2016, Astronomical Telescopes + Instrumentation.

[17]  Mercedes Lopez-Morales,et al.  FEASIBILITY STUDIES FOR THE DETECTION OF O2 IN AN EARTH-LIKE EXOPLANET , 2013, 1312.1585.

[18]  P. McCullough,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[19]  P. Jablonka,et al.  The formation of the Milky Way halo and its dwarf satellites; a NLTE-1D abundance analysis , 2017, 1704.07656.

[20]  Frantz Martinache,et al.  Efficiently feeding single-mode fiber photonic spectrographs with an extreme adaptive optics system: on-sky characterization and preliminary spectroscopy , 2016, Astronomical Telescopes + Instrumentation.

[21]  M. C. Cárdenas,et al.  Comprehensive transient-state study for CARMENES NIR high-thermal stability , 2010, Astronomical Telescopes + Instrumentation.

[22]  D. Guzman,et al.  The GMT-CfA, Carnegie, Catolica, Chicago Large Earth Finder (G-CLEF): a general purpose optical echelle spectrograph for the GMT with precision radial velocity capability , 2012, Other Conferences.

[23]  Jerry Edelstein,et al.  High-Resolution Broadband Spectroscopy Using an Externally Dispersed Interferometer , 2003 .

[24]  Clayton R. Locke,et al.  Laser frequency comb techniques for precise astronomical spectroscopy , 2012, 1202.0819.

[25]  R. Lazkoz,et al.  Forecast and analysis of the cosmological redshift drift , 2017, The European Physical Journal C.

[26]  Giuseppina Micela,et al.  On-sky single-mode fiber coupling measurements at the Large Binocular Telescope , 2016, Astronomical Telescopes + Instrumentation.

[27]  Martin M. Sirk,et al.  High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 1, data analysis and results , 2016 .

[28]  R. Poole,et al.  FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY , 2013, 1302.3251.

[29]  Nicolas Buchschacher,et al.  Harps-N: the new planet hunter at TNG , 2012, Other Conferences.

[30]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[31]  Ignasi Ribas,et al.  WEIGHING THE NON-TRANSITING HOT JUPITER τ Boo b , 2012, 1206.6197.

[32]  Anu Dudhia,et al.  The Reference Forward Model (RFM) , 2017 .

[33]  Drake Deming,et al.  THE TRANSITING EXOPLANET SURVEY SATELLITE: SIMULATIONS OF PLANET DETECTIONS AND ASTROPHYSICAL FALSE POSITIVES , 2015, 1506.03845.

[34]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[35]  M. Riva,et al.  ESPRESSO APSU: simplify the life of pupil slicing , 2013, Optics & Photonics - Optical Engineering + Applications.

[36]  Jerry Edelstein,et al.  Precise Stellar Radial Velocities of an M Dwarf with a Michelson Interferometer and a Medium-Resolution Near-Infrared Spectrograph , 2011, 1103.0004.

[37]  Bruno Chazelas,et al.  A passive cost-effective solution for the high accuracy wavelength calibration of radial velocity spectrographs , 2012, Other Conferences.