ZnS/ZnO heterojunction as photoelectrode: Type II band alignment towards enhanced photoelectrochemical performance

[1]  Liejin Guo,et al.  Tin(II) Antimonates with Adjustable Compositions: Effects of Band‐Gaps and Nanostructures on Visible‐Light‐Driven Photocatalytic H2 Evolution , 2012 .

[2]  A. Demkov,et al.  Band alignment and electronic structure of the anatase TiO2/SrTiO3(001) heterostructure integrated on Si(001) , 2012 .

[3]  P. Samanta,et al.  Enhanced photoluminescence from ZnO/ZnScore-shell structure , 2012 .

[4]  Jinhua Ye,et al.  Single-crystal nanosheet-based hierarchical AgSbO3 with exposed {001} facets: topotactic synthesis and enhanced photocatalytic activity. , 2012, Chemistry.

[5]  Ichiro Yamada,et al.  ZnO-ZnGa2O4 core-shell nanowire array for stable photoelectrochemical water splitting. , 2012, Nanoscale.

[6]  M. Seol,et al.  Highly Efficient Photoelectrochemical Hydrogen Generation Using Hierarchical ZnO/WOx Nanowires Cosensitized with CdSe/CdS , 2011 .

[7]  Y. Sun,et al.  Band offsets of epitaxial LaAlO3/TiO2 interface determined by X-ray photoelectron spectroscopy , 2011 .

[8]  M. C. Chen,et al.  Type-II heterojunction organic/inorganic hybrid non-volatile memory based on FeS2 nanocrystals embedded in poly(3-hexylthiophene) , 2011 .

[9]  Hongyuan Wei,et al.  Measurement of wurtzite ZnO/rutile TiO2 heterojunction band offsets by x-ray photoelectron spectroscopy , 2011 .

[10]  Liejin Guo,et al.  Nanoparticles enwrapped with nanotubes: A unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water , 2011 .

[11]  Xiaohe Liu,et al.  Rational synthetic strategy: From ZnO nanorods to ZnS nanotubes , 2009 .

[12]  Xingtai Zhou,et al.  Biaxial ZnO−ZnS Nanoribbon Heterostructures , 2009 .

[13]  T. Sham,et al.  Optical emission of biaxial ZnO-ZnS nanoribbon heterostructures. , 2009, The Journal of chemical physics.

[14]  Y. Bando,et al.  Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures. , 2008, Nano letters.

[15]  Po-Tsung Hsieh,et al.  Luminescence mechanism of ZnO thin film investigated by XPS measurement , 2007 .

[16]  Z. L. Wang,et al.  Mismatch Strain Induced Formation of ZnO/ZnS Heterostructured Rings , 2007 .

[17]  Lin-Wang Wang,et al.  Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. , 2007, Nano letters.

[18]  Hongyuan Wei,et al.  Investigation of Oxygen Vacancy and Interstitial Oxygen Defects in ZnO Films by Photoluminescence and X-Ray Photoelectron Spectroscopy , 2007 .

[19]  Cheng Yang,et al.  Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2 , 2007 .

[20]  Jeongyong Lee,et al.  Microstructural analysis of ZnO/ZnS nanocables through Moiré fringe induced by overlapped area of ZnO and ZnS , 2006 .

[21]  D. Shen,et al.  Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method. , 2006, The journal of physical chemistry. B.

[22]  Liejin Guo,et al.  A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure. , 2006, The journal of physical chemistry. B.

[23]  Shui-Tong Lee,et al.  Fabrication, morphology, structure, and photoluminescence of ZnS and CdS nanoribbons , 2005 .

[24]  Alf Mews,et al.  Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. , 2005, Journal of the American Chemical Society.

[25]  T. Sham,et al.  Synthesis and synchrotron light-induced luminescence of ZnO nanostructures: nanowires, nanoneedles, nanoflowers, and tubular whiskers. , 2005, The journal of physical chemistry. B.

[26]  Mang Wang,et al.  A facile room-temperature chemical reduction method to TiO2@CdS core/sheath heterostructure nanowires , 2004 .

[27]  P. Holloway,et al.  Efficient and Photostable ZnS‐Passivated CdS:Mn Luminescent Nanocrystals , 2004 .

[28]  T. Nakada,et al.  Band offset of high efficiency CBD-ZnS/CIGS thin film solar cells , 2003 .

[29]  Hideki Kato,et al.  Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. , 2003, Journal of the American Chemical Society.

[30]  Zhong Lin Wang,et al.  Rectangular Porous ZnO–ZnS Nanocables and ZnS Nanotubes , 2002 .

[31]  Masashi Kawasaki,et al.  S doping in ZnO film by supplying ZnS species with pulsed-laser-deposition method , 2002 .

[32]  Judy L. Hoyt,et al.  Bandgap and transport properties of Si/sub 1-x/Ge/sub x/ by analysis of nearly ideal Si/Si/sub 1-x/Ge/sub x//Si heterojunction bipolar transistors , 1989 .

[33]  Bernard,et al.  Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys. , 1987, Physical review. B, Condensed matter.

[34]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[35]  John B. Goodenough,et al.  X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films , 1977 .

[36]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[37]  S. Kuwabata,et al.  Photosensitization of ZnO rod electrodes with AgInS2 nanoparticles and ZnS-AgInS2 solid solution nanoparticles for solar cell applications , 2012 .

[38]  K. Saravanakumar XPS and Raman Studies on (002) Oriented Nanocrystalline ZnO Films Showing Temperature Dependent Optical Red Shift , 2011 .

[39]  H. Kroemer,et al.  Heterostructure bipolar transistors and integrated circuits , 1982, Proceedings of the IEEE.