INCREMENTAL CONCEPT FORMATION ALGORITHMS BASED ON GALOIS (CONCEPT) LATTICES

The Galois (or concept) lattice produced from a binary relation has proved useful for many applications. Building the Galois lattice can be considered a conceptual clustering method because it results in a concept hierarchy. This article presents incremental algorithms for updating the Galois lattice and corresponding graph, resulting in an incremental concept formation method. Different strategies are considered based on a characterization of the modifications implied by such an update. Results of empirical tests are given in order to compare the performance of the incremental algorithms to three other batch algorithms. Surprisingly, when the total time for incremental generation is used, the simplest and less efficient variant of the incremental algorithms outperforms the batch algorithms in most cases. When only the incremental update time is used, the incremental algorithm outperforms all the batch algorithms. Empirical evidence shows that, on the average, the incremental update is done in time proportional to the number of instances previously treated. Although the worst case is exponential, when there is a fixed upper bound on the number of features related to an instance, which is usually the case in practical applications, the worst‐case analysis of the algorithm also shows linear growth with respect to the number of instances.

[1]  J. Bordat Calcul pratique du treillis de Galois d'une correspondance , 1986 .

[2]  William Frawley,et al.  Knowledge Discovery in Databases , 1991 .

[3]  Rudolf Wille,et al.  Line diagrams of hierarchical concept systems , 1984 .

[4]  Michael J. Pazzani,et al.  Concept formation in context , 1991 .

[5]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[6]  Rokia Missaoui,et al.  Experimental Comparison of Navigation in a Galois Lattice with Conventional Information Retrieval Methods , 1993, Int. J. Man Mach. Stud..

[7]  Guy W. Mineau,et al.  Automatic Structuring of Knowledge Bases by Conceptual Clustering , 1995, IEEE Trans. Knowl. Data Eng..

[8]  Gregor Snelting,et al.  On the inference of configuration structures from source code , 1994, Proceedings of 16th International Conference on Software Engineering.

[9]  Pat Langley,et al.  Models of Incremental Concept Formation , 1990, Artif. Intell..

[10]  Robert Godin,et al.  Lattice model of browsable data spaces , 1986, Inf. Sci..

[11]  M. Pazzani,et al.  Concept formation knowledge and experience in unsupervised learning , 1991 .

[12]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[13]  Hafedh Mili,et al.  Building and maintaining analysis-level class hierarchies using Galois Lattices , 1993, OOPSLA '93.

[14]  A. Guénoche Construction du treillis de Galois d'une relation binaire , 1990 .

[15]  Rokia Missaoui,et al.  An Incremental Concept Formation Approach for Learning from Databases , 1994, Theor. Comput. Sci..

[16]  Claudio Carpineto,et al.  GALOIS: An Order-Theoretic Approach to Conceptual Clustering , 1993, ICML.

[17]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[18]  Rokia Missaoui,et al.  Search for Concepts and Dependencies in Databases , 1993, RSKD.

[19]  LebowitzMichael Experiments with Incremental Concept Formation , 1987 .

[20]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[21]  Gregory Piatetsky-Shapiro,et al.  Knowledge Discovery in Databases: An Overview , 1992, AI Mag..

[22]  Engelbert Mephu-Nguifo Concevoir une abstraction à partir de ressemblances , 1993 .

[23]  Rokia Missaoui,et al.  Applying Concept Formation Methods to Software Reuse , 1995, Int. J. Softw. Eng. Knowl. Eng..

[24]  Rokia Missaoui,et al.  Learning algorithms using a Galois lattice structure , 1991, [Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91.

[25]  R. Wille Concept lattices and conceptual knowledge systems , 1992 .