The generalized 3-connectivity of star graphs and bubble-sort graphs

For S ? G, let ?(S) denote the maximum number r of edge-disjoint trees T 1 , T 2 , ? , T r in G such that V ( T i ) ? V ( T j ) = S for any i , j ? { 1 , 2 , ? , r } and i ? j. For every 2 ? k ? n, the generalized k-connectivity of G ?k(G) is defined as the minimum ?(S) over all k-subsets S of vertices, i.e., ? k ( G ) = min { ? ( S ) | S ? V ( G ) a n d | S | = k } . Clearly, ?2(G) corresponds to the traditional connectivity of G. The generalized k-connectivity can serve for measuring the capability of a network G to connect any k vertices in G. Cayley graphs have been used extensively to design interconnection networks. In this paper, we restrict our attention to two classes of Cayley graphs, the star graphs Sn and the bubble-sort graphs Bn, and investigate the generalized 3-connectivity of Sn and Bn. We show that ? 3 ( S n ) = n - 2 and ? 3 ( B n ) = n - 2 .

[1]  Xueliang Li,et al.  Note on the hardness of generalized connectivity , 2012, J. Comb. Optim..

[2]  Jixiang Meng,et al.  Conditional connectivity of Cayley graphs generated by transposition trees , 2010, Inf. Process. Lett..

[3]  Eddie Cheng,et al.  Orienting Cayley graphs generated by transposition trees , 2008, Comput. Math. Appl..

[4]  Xueliang Li,et al.  Rainbow connections for outerplanar graphs with diameter 2 and 3 , 2014, Appl. Math. Comput..

[5]  Xueliang Li,et al.  Sharp bounds for the generalized connectivity kappa3(G) , 2009, Discret. Math..

[6]  Xu Chen,et al.  Ratcheting strain and simulation of 16MnR steel under uniaxial cyclic loading , 2012 .

[7]  S. Lakshmivarahan,et al.  Symmetry in Interconnection Networks Based on Cayley Graphs of Permutation Groups: A Survey , 1993, Parallel Comput..

[8]  Wei Li,et al.  The generalized connectivity of complete bipartite graphs , 2010, Ars Comb..

[9]  Xueliang Li,et al.  The minimal size of a graph with generalized connectivity κ3 = 2 , 2011, Australas. J Comb..

[10]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[11]  Xueliang Li,et al.  Rainbow Connection in 3-Connected Graphs , 2013, Graphs Comb..

[12]  Xueliang Li,et al.  A survey on the generalized connectivity of graphs , 2012, ArXiv.

[13]  Xueliang Li,et al.  Rainbow Connections of Graphs: A Survey , 2011, Graphs Comb..

[14]  Zhao Zhang,et al.  A kind of conditional vertex connectivity of star graphs , 2009, Appl. Math. Lett..

[15]  Marie-Claude Heydemann,et al.  Cayley graphs and interconnection networks , 1997 .

[16]  Xueliang Li,et al.  Note on the generalized connectivity , 2014, Ars Comb..

[17]  Michael Hager,et al.  Pendant tree-connectivity , 1985, J. Comb. Theory, Ser. B.

[18]  Xueliang Li,et al.  The generalized 3-connectivity of Cartesian product graphs , 2011, 1103.6095.

[19]  Michael Hager,et al.  Path-connectivity in graphs , 1986, Discret. Math..

[20]  Yongtang Shi,et al.  On the Rainbow Vertex-Connection , 2013, Discuss. Math. Graph Theory.