Hand Gestures Detection, Tracking and Classification Using Convolutional Neural Network

The article describes a software pipeline for detecting, tracking and classification of static hand gestures of the Russian Sign Language in a video stream using computer vision and deep learning techniques. The dataset used for this task is original, includes 10 classes and consists of more than 2000 unique images. The solution includes a hand detection module that uses a color mask, a gesture tracking module, a static gestures classification module in the detected region of the image based on convolutional neural network, as well as an auxiliary image preprocessing module and dataset augmentation module.

[1]  Jakub Nalepa,et al.  Wrist Localization in Color Images for Hand Gesture Recognition , 2013, ICMMI.

[2]  Andrey Philippovich,et al.  Gesture-based animated CAPTCHA , 2016, Inf. Comput. Secur..

[3]  Luis Perez,et al.  The Effectiveness of Data Augmentation in Image Classification using Deep Learning , 2017, ArXiv.

[4]  Cheng-Chew Lim,et al.  Segmentation of the face and hands in sign language video sequences using color and motion cues , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[5]  Andrey Philippovich,et al.  Static Gestures Classification Using Convolutional Neural Networks on the Example of the Russian Sign Language , 2018, AIST.

[6]  Alexander Verl,et al.  Cooperation of human and machines in assembly lines , 2009 .

[7]  Vassilis Athitsos,et al.  Comparing gesture recognition accuracy using color and depth information , 2011, PETRA '11.

[8]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[9]  P. Ganesan,et al.  International Conference on Recent Trends in Computing 2015 ( ICRTC-2015 ) Comparative Study of Skin Color Detection and Segmentation in HSV and YCbCr Color Space , 2015 .

[10]  Julien Letessier,et al.  Visual tracking of bare fingers for interactive surfaces , 2004, UIST '04.

[11]  Martin Buss,et al.  Human-Robot Collaboration: a Survey , 2008, Int. J. Humanoid Robotics.

[12]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[13]  Wolfgang Förstner,et al.  Image Preprocessing for Feature Extraction in Digital Intensity, Color and Range Images , 2000 .

[14]  Harris Drucker,et al.  Learning algorithms for classification: A comparison on handwritten digit recognition , 1995 .