MEMS enabled suspended silicon waveguide platform for long-wave infrared modulation applications

Abstract Long-wave infrared (LWIR, 6–14 µm) is an important wavelength range as it covers abundant vibrational molecular fingerprints that can be used for gas/liquid sensing and absorption spectroscopy. Silicon waveguide-based passive photonic devices that offer advantages toward chip-scale miniaturization of photonic integrated circuits (PIC) and photonic sensors in LWIR have been explored. However, the modulation of Si-based guided-wave propagation in LWIR remains less reported. Here, we demonstrate a MEMS tunable directional coupler operating at a long-wave infrared wavelength range (6.4–7 µm) using suspended Si waveguides with subwavelength gratings. Leveraging the membrane transfer technology, the whole photonic waveguide device membrane is transferred onto a receiver substrate with a cavity that allows sufficient displacement for MEMS electrostatic actuation. The proposed device experimentally achieved an optical attenuation of −14.25 dB with 90 V DC bias voltage, while having a response time of 177 µs. In addition, the demonstration of using such a device for computational spectroscopy has been validated.

[1]  X. Mu,et al.  Loss‐induced phase transition in mid‐infrared plasmonic metamaterials for ultrasensitive vibrational spectroscopy , 2022, InfoMat.

[2]  B. Dong,et al.  Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy , 2022, Nature Communications.

[3]  B. Dong,et al.  Larger-Than-Unity External Optical Field Confinement Enabled by Metamaterial-Assisted Comb Waveguide for Ultrasensitive Long-Wave Infrared Gas Spectroscopy. , 2022, Nano letters.

[4]  B. Dong,et al.  MEMS-Enabled On-Chip Computational Mid-Infrared Spectrometer Using Silicon Photonics , 2022, ACS Photonics.

[5]  Chengkuo Lee,et al.  Controlling of spatial modes in multi-mode photonic crystal nanobeam cavity. , 2022, Optics Express.

[6]  Chengkuo Lee,et al.  Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart Homes and Health Care , 2022, ACS materials Au.

[7]  Chengkuo Lee,et al.  Artificial Intelligence‐Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual Reality/Augmented Reality to the Digital Twin , 2022, Adv. Intell. Syst..

[8]  Chengkuo Lee,et al.  Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications , 2022, iScience.

[9]  B. Dong,et al.  Mid-infrared modulators integrating silicon and black phosphorus photonics , 2021, Materials Today Advances.

[10]  B. Dong,et al.  Subwavelength on‐chip light focusing with bigradient all‐dielectric metamaterials for dense photonic integration , 2021, InfoMat.

[11]  B. Dong,et al.  Suspended Silicon Waveguide with Sub-Wavelength Grating Cladding for Optical MEMS in Mid-Infrared , 2021, Micromachines.

[12]  Zi Heng Lim,et al.  Cascaded, self-calibrated, single-pixel mid-infrared Hadamard transform spectrometer. , 2021, Optics express.

[13]  Chengkuo Lee,et al.  Multifunctional Chemical Sensing Platform Based on Dual‐Resonant Infrared Plasmonic Perfect Absorber for On‐Chip Detection of Poly(ethyl cyanoacrylate) , 2021, Advanced science.

[14]  B. Dong,et al.  Development of Triboelectric-Enabled Tunable Fabry Pérot Photonic-Crystal-Slab Filter Towards Wearable Mid-Infrared Computational Spectrometer , 2021 .

[15]  Chengkuo Lee,et al.  Heterogeneous Wafer Bonding Technology and Thin-Film Transfer Technology-Enabling Platform for the Next Generation Applications beyond 5G , 2021, Micromachines.

[16]  B. Dong,et al.  Mid-Infrared Waveguide-Integrated Dielectric Metalens by Bigradient Slots on Silicon , 2021, 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers).

[17]  B. Dong,et al.  Heterogeneously Integrated Graphene/Silicon/Halide Waveguide Photodetectors toward Chip-Scale Zero-Bias Long-Wave Infrared Spectroscopic Sensing. , 2021, ACS nano.

[18]  B. Dong,et al.  Suspended silicon waveguide platform with subwavelength grating metamaterial cladding for long-wave infrared sensing applications , 2021, Nanophotonics.

[19]  P. Verheyen,et al.  Broadband Compact Single-Pole Double-Throw Silicon Photonic MEMS Switch , 2021, Journal of Microelectromechanical Systems.

[20]  Ming C. Wu,et al.  32 × 32 silicon photonic MEMS switch with gap-adjustable directional couplers fabricated in commercial CMOS foundry , 2021 .

[21]  P. Verheyen,et al.  Low-Voltage Silicon Photonic MEMS Switch with Vertical Actuation , 2021, 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS).

[22]  B. Dong,et al.  Progress of optomechanical micro/nano sensors: a review , 2021, International Journal of Optomechatronics.

[23]  Chengkuo Lee,et al.  Metamaterial technologies for miniaturized infrared spectroscopy: Light sources, sensors, filters, detectors, and integration , 2020, Journal of Applied Physics.

[24]  B. Dong,et al.  Demonstration of mid-infrared slow light one-dimensional photonic crystal ring resonator with high-order photonic bandgap. , 2020, Optics express.

[25]  Qiongfeng Shi,et al.  Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem , 2020 .

[26]  Mahmut Sami Yazici,et al.  Multifunctional mid-infrared photonic switch using a MEMS-based tunable waveguide coupler. , 2020, Optics letters.

[27]  Chengkuo Lee,et al.  Metal–Organic Framework‐Surface‐Enhanced Infrared Absorption Platform Enables Simultaneous On‐Chip Sensing of Greenhouse Gases , 2020, Advanced science.

[28]  Yanhong Tian,et al.  Nanometer-Scale Heterogeneous Interfacial Sapphire Wafer-Bonding for Enabling Plasmonic-Enhanced Nanofluidic Mid-Infrared Spectroscopy. , 2020, ACS nano.

[29]  Jianwei Wang,et al.  Thermally-Reconfigurable Silicon Photonic Devices and Circuits , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Chengkuo Lee,et al.  Metamaterials – from fundamentals and MEMS tuning mechanisms to applications , 2020, Nanophotonics.

[31]  B. Dong,et al.  High‐Responsivity Mid‐Infrared Black Phosphorus Slow Light Waveguide Photodetector , 2020, Advanced Optical Materials.

[32]  Mahmut Sami Yazici,et al.  Integration of MEMS IR detectors with MIR waveguides for sensing applications. , 2020, Optics express.

[33]  Yiming Ma,et al.  Progress of infrared guided-wave nanophotonic sensors and devices , 2020, Nano Convergence.

[34]  Kristinn B. Gylfason,et al.  MEMS for Photonic Integrated Circuits , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  Kristinn B. Gylfason,et al.  MEMS-Enabled Silicon Photonic Integrated Devices and Circuits , 2020, IEEE Journal of Quantum Electronics.

[36]  Chengkuo Lee,et al.  Anomalous plasmon hybridization in nanoantennas near interfaces. , 2019, Optics letters.

[37]  Chengkuo Lee,et al.  MIR plasmonic liquid sensing in nano-metric space driven by capillary force , 2019, Journal of Physics D: Applied Physics.

[38]  Chengkuo Lee,et al.  Leveraging of MEMS Technologies for Optical Metamaterials Applications , 2019, Advanced Optical Materials.

[39]  Patricia Yang Liu,et al.  Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution , 2019, Nature Communications.

[40]  Ming C. Wu,et al.  Large Scale Silicon Photonics Switches Based on MEMS Technology , 2019, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[41]  F Y Gardes,et al.  Silicon-on-insulator free-carrier injection modulators for the mid-infrared. , 2019, Optics letters.

[42]  Chengkuo Lee,et al.  Waveguide-Integrated Black Phosphorus Photodetector for Mid-Infrared Applications. , 2019, ACS nano.

[43]  K. Hane,et al.  Silicon photonic microelectromechanical switch using lateral adiabatic waveguide couplers. , 2018, Optics express.

[44]  B. Dong,et al.  Dispersion engineering and thermo-optic tuning in mid-infrared photonic crystal slow light waveguides on silicon-on-insulator. , 2018, Optics letters.

[45]  Liang Li,et al.  Design of an on-chip Fourier transform spectrometer using waveguide directional couplers and NEMS. , 2018, Optics express.

[46]  G. Lo,et al.  Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure , 2018, Nanomaterials.

[47]  G. Lo,et al.  Efficient and broadband subwavelength grating coupler for 3.7 μm mid-infrared silicon photonics integration. , 2018, Optics express.

[48]  Chengkuo Lee,et al.  Nanofluidic terahertz metasensor for sensing in aqueous environment , 2018, Applied Physics Letters.

[49]  Milos Nedeljkovic,et al.  Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy. , 2018, Optics letters.

[50]  Chengkuo Lee,et al.  Towards low-loss waveguides in SOI and Ge-on-SOI for mid-IR sensing , 2018 .

[51]  Chengkuo Lee,et al.  Hybrid Metamaterial Absorber Platform for Sensing of CO2 Gas at Mid‐IR , 2018, Advanced science.

[52]  Wen Zhou,et al.  Fully suspended slot waveguide platform , 2018 .

[53]  Anwar Faizd Osman,et al.  Suspended silicon waveguides for long-wave infrared wavelengths. , 2017, Optics letters.

[54]  Guo-Qiang Lo,et al.  Silicon photonic platforms for mid-infrared applications [Invited] , 2017 .

[55]  G. Lo,et al.  Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics , 2017, IEEE Photonics Journal.

[56]  I Molina-Fernández,et al.  Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding. , 2016, Optics express.

[57]  C. Ho,et al.  Tunable Autler–Townes Splitting Observation in Coupled Whispering Gallery Mode Resonators , 2016, IEEE Photonics Journal.

[58]  Diaa Khalil,et al.  On-Chip Micro–Electro–Mechanical System Fourier Transform Infrared (MEMS FT-IR) Spectrometer-Based Gas Sensing , 2016, Applied spectroscopy.

[59]  Karla Hiller,et al.  Tunable MEMS Fabry-Pérot filters for infrared microspectrometers: a review , 2016, SPIE OPTO.

[60]  Ming C. Wu,et al.  Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers , 2016 .

[61]  H. Cai,et al.  Two-dimensional photonic-crystal-based Fabry-Perot etalon. , 2015, Optics letters.

[62]  Ming C. Wu,et al.  Large-scale silicon photonic switches with movable directional couplers , 2015 .

[63]  I Molina-Fernández,et al.  Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared. , 2014, Optics letters.

[64]  Han Yan,et al.  Electrostatic pull-in instability in MEMS/NEMS: A review , 2014 .

[65]  H. M. Chu,et al.  A Wide-Tuning Silicon Ring-Resonator Composed of Coupled Freestanding Waveguides , 2014, IEEE Photonics Technology Letters.

[66]  Chengkuo Lee,et al.  Tunable Fabry-Perot Filter Using Hybrid Integrated Grating and Slot Microstructures , 2014, Journal of Microelectromechanical Systems.

[67]  David J. Thomson,et al.  Mid-Infrared Thermo-Optic Modulators in SoI , 2014, IEEE Photonics Technology Letters.

[68]  Pao Tai Lin,et al.  Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing. , 2014, Nano letters.

[69]  C. Ho,et al.  High sensitive silicon optical index sensor based on Ring-assisted Mach-Zehnder interferometer , 2013, 2013 International Conference on Optical MEMS and Nanophotonics (OMN).

[70]  Chengkuo Lee,et al.  Fabry-Perot filter using grating structures. , 2013, Optics letters.

[71]  Siegfried Janz,et al.  High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides. , 2013, Optics letters.

[72]  Patrick J. French,et al.  Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability , 2009 .

[73]  Chengkuo Lee,et al.  Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator. , 2009, Applied optics.

[74]  Guo-Qiang Lo,et al.  Si nanophotonics based cantilever sensor , 2008 .

[75]  Chengkuo Lee,et al.  Design and Modeling of a Nanomechanical Sensor Using Silicon Photonic Crystals , 2008, Journal of Lightwave Technology.

[76]  Karla Hiller,et al.  Tunable infrared detector with integrated micromachined Fabry-Perot filter , 2007, SPIE MOEMS-MEMS.

[77]  P. Griffiths Introduction to Vibrational Spectroscopy , 2006 .

[78]  Alun Harris,et al.  Frequency adjustment of microelectromechanical cantilevers using electrostatic pull down , 2005 .

[79]  David J. Monk,et al.  MEMS cantilever beam electrostatic pull-in model , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[80]  Gene H. Golub,et al.  Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.

[81]  Fei Wang,et al.  A comprehensive study of non-linear air damping and “pull-in” effects on the electrostatic energy harvesters , 2020 .

[82]  Hang,et al.  Vernier effect-based tunable mid-infrared sensor using silicon-on-insulator cascaded rings , 2020 .

[83]  G. Lo,et al.  Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics. , 2019, Optics letters.

[84]  Eng,et al.  Ultra-small photonic crystal (PhC)-based test tool for gas permeability of polymers , 2019 .

[85]  Mathieu Carras,et al.  Low-loss Ge-rich Si0.2Ge0.8 waveguides for mid-infrared photonics. , 2017, Optics letters.

[86]  M. Lipson,et al.  Controlling thermo-optic response in microresonators using bimaterial cantilevers. , 2015, Optics letters.

[87]  Chengkuo Lee,et al.  Lateral lattice shift engineered slow light in elliptical photonics crystal waveguides , 2014 .

[88]  Timo Veijola,et al.  Modelling and validation of air damping in perforated gold and silicon MEMS plates , 2009 .