Solving STO And KD Equations with Modified Riemann-Liouville Derivative Using Improved (G’/G)-expansion Function Method

This present article applies fractional complex transformation to convert nonlinear fractional evolution equations to nonlinear ordinary differential equations, and obtain the exact solitary wave solutions of space-time fractional SharmaTasso-Olever (STO) and Konopelchenko-Dubrovsky (KD) equations by using the improved ( G ′ G )-expansion function method, respectively. The fractional derivative is defined in the sense of modified Riemann-Liouville derivative. The results show that the method is efficient and powerful for solving wide classes of nonlinear fractional evolution equations.

[1]  J. Blackledge Application of the Fractional Diffusion Equation for Predicting Market Behaviour , 2010 .

[2]  Lina Song,et al.  Rational approximation solution of the fractional Sharma-Tasso-Olever equation , 2009 .

[3]  Guy Jumarie,et al.  Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution , 2007 .

[4]  Adem C. Cevikel,et al.  A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations , 2014, TheScientificWorldJournal.

[5]  Zheng Bin,et al.  (G'/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics , 2012 .

[6]  Mohammad Saleh Tavazoei,et al.  Describing function based methods for predicting chaos in a class of fractional order differential equations , 2009 .

[7]  Ahmet Bekir,et al.  The G ′ G-expansion method for the nonlinear lattice equations , 2012 .

[8]  Youwei Zhang Time-Fractional Camassa–Holm Equation: Formulation and Solution Using Variational Methods , 2013 .

[9]  Tang Jia-shi,et al.  Travelling Wave Solutions for Konopelchenko?Dubrovsky Equation Using an Extended sinh-Gordon Equation Expansion Method , 2008 .

[10]  A. Fairhall,et al.  Fractional differentiation by neocortical pyramidal neurons , 2008, Nature Neuroscience.

[11]  Guy Jumarie,et al.  Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative , 2009, Appl. Math. Lett..

[12]  Santanu Saha Ray,et al.  An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method , 2005, Appl. Math. Comput..

[13]  Wang Kelin,et al.  Multi-soliton Solutions of the Konopelchenko-Dubrovsky Equation , 2001 .

[14]  B. Zheng Exp-Function Method for Solving Fractional Partial Differential Equations , 2013, TheScientificWorldJournal.

[15]  N. Yağmurlu,et al.  Approximate Analytical Solutions of the Fractional Sharma-Tasso-Olver Equation Using Homotopy Analysis Method and a Comparison with Other Methods , 2012 .

[16]  Hong Zhao,et al.  Abundant multisoliton structures of the Konopelchenko-Dubrovsky equation , 2006 .

[17]  Enrico Scalas,et al.  Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .

[18]  Ahmed Alawneh,et al.  Variational iteration method for solving the space‐ and time‐fractional KdV equation , 2008 .

[19]  Agnieszka B. Malinowska,et al.  Introduction to the Fractional Calculus of Variations , 2012 .

[20]  Agnieszka B. Malinowska,et al.  Fractional Variational Calculus with Classical and Combined Caputo Derivatives , 2011, 1101.2932.

[21]  I. Podlubny Fractional differential equations , 1998 .

[22]  Jinliang Zhang,et al.  Application of the (G'/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations , 2008, Appl. Math. Comput..

[23]  Eric Wai Ming Lee,et al.  FRACTIONAL VARIATIONAL ITERATION METHOD AND ITS APPLICATION , 2010 .

[24]  A. Golmamadian New Nonlinear Fractional Model for Differential Equations , 2013 .

[25]  M. Merdan A numeric–analytic method for time-fractional Swift–Hohenberg (S–H) equation with modified Riemann–Liouville derivative , 2013 .

[26]  H. Bulut,et al.  Modified Trial Equation Method to the Nonlinear Fractional Sharma-Tasso-Olever Equation , 2013 .

[27]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[28]  B. Lu The first integral method for some time fractional differential equations , 2012 .

[29]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[30]  Guy Jumarie,et al.  Cauchy's integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order , 2010, Appl. Math. Lett..

[31]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[32]  Ahmet Bekir,et al.  Exact solutions of nonlinear fractional differential equations by (G′/G)-expansion method , 2013 .

[33]  Adem C. Cevikel,et al.  Fractional Complex Transform and exp-Function Methods for Fractional Differential Equations , 2013 .

[34]  Agnieszka B. Malinowska,et al.  A fractional calculus of variations for multiple integrals with application to vibrating string , 2010, 1001.2722.

[35]  Rina Schumer,et al.  Multiscaling fractional advection‐dispersion equations and their solutions , 2003 .

[36]  N. Taghizadeh,et al.  Application of the simplest equation method to some time-fractional partial differential equations , 2013 .

[37]  Ahmed M. A. El-Sayed,et al.  The Adomian decomposition method for solving partial differential equations of fractal order in finite domains , 2006 .

[38]  Shaher Momani,et al.  A generalized differential transform method for linear partial differential equations of fractional order , 2008, Appl. Math. Lett..

[39]  S. Momani,et al.  Application of generalized differential transform method to multi-order fractional differential equations , 2008 .

[40]  Li Zhi-Fang,et al.  Infinitely Many Symmetries of Konopelchenko–Dubrovsky Equation* , 2005 .