Exact modulus of continuities for $\Lambda$-Fleming-Viot processes with Brownian spatial motion

. For a class of Λ-Fleming-Viot processes with Brownian spatial motion in R d whose associated Λ-coalescents come down from infinity, we obtain sharp global and local modulus of continuities for the ancestry processes recovered from the lookdown constructions. As applications, we prove both global and local modulus of continuities for the Λ-Fleming-Viot support processes. In particular, if the Λ-coalescent is the Beta(2 − β, β ) coalescent for β ∈ (1 , 2] with β = 2 corresponding to Kingman’s coalescent, then for h ( t ) = p t log(1 /t ), the global modulus of continuity holds for the support process with modulus function p 2 β/ ( β − 1) h ( t ), and both the left and right local modulus of continuity hold for the support process with modulus function p 2 / ( β − 1) h ( t ).

[1]  T. Kurtz,et al.  Genealogical constructions of population models , 2014, The Annals of Probability.

[2]  M. Birkner,et al.  A modified lookdown construction for the Xi-Fleming-Viot process with mutation and populations with recurrent bottlenecks , 2008, 0808.0412.

[3]  N. Berestycki,et al.  The Λ-coalescent speed of coming down from infinity , 2008, 0807.4278.

[4]  J. Bertoin,et al.  Stochastic flows associated to coalescent processes. III. Limit theorems , 2005, math/0506092.

[5]  J. Bertoin,et al.  Stochastic flows associated to coalescent processes , 2003 .

[6]  S. Sagitov The general coalescent with asynchronous mergers of ancestral lines , 1999, Journal of Applied Probability.

[7]  J. Pitman Coalescents with multiple collisions , 1999 .

[8]  J. Dhersin,et al.  Kolmogorov's test for super-Brownian motion , 1998 .

[9]  D. Dawson,et al.  Almost-sure path properties of (2, d, β)-superprocesses , 1994 .

[10]  M. Reimers A new result on the support of the fleming-viot process, proved by non-standard construction , 1993 .

[11]  Joel Spencer,et al.  Ecole D'Ete De Probabilites De Saint-Flour Xxi-1991 , 1993 .

[12]  Stewart N. Ethier,et al.  Fleming-Viot processes in population genetics , 1993 .

[13]  D. Dawson,et al.  Super-Brownian motion: Path properties and hitting probabilities , 1989 .

[14]  Kenneth J. Hochberg,et al.  Wandering Random Measures in the Fleming-Viot Model , 1982 .

[15]  Huili Liu,et al.  The compact support property for the Λ-Fleming-Viot process with underlying Brownian motion ∗ , 2012 .

[16]  A. Etheridge Some Mathematical Models from Population Genetics , 2011 .

[17]  M. Birkner,et al.  Measure-valued diffusions, general coalescents and population genetic inference , 2007 .

[18]  Jean Bertoin,et al.  Random fragmentation and coagulation processes , 2006 .

[19]  Christopher Bergevin,et al.  Brownian Motion , 2006, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[20]  Peter Donnelly,et al.  Genealogical processes for Fleming-Viot models with selection and recombination , 1999 .

[21]  Peter Donnelly,et al.  Particle Representations for Measure-Valued Population Models , 1999 .

[22]  P. Donnelly,et al.  Particle representations for measure-valued population models 1 June 1 , 1998 , 1998 .

[23]  Peter Donnelly,et al.  A countable representation of the Fleming-Viot measure-valued diffusion , 1996 .

[24]  Donald A. Dawson,et al.  Measure-valued Markov processes , 1993 .

[25]  R. Tribe Path properties of superprocesses , 1989 .

[26]  Jason Schweinsberg ELECTRONIC COMMUNICATIONS in PROBABILITY A NECESSARY AND SUFFICIENT CONDITION FOR THE Λ-COALESCENT TO COME DOWN FROM IN- FINITY. , 2022 .