A mixed finite element method with piecewise linear elements for the biharmonic equation on surfaces

The biharmonic equation with Dirichlet and Neumann boundary conditions discretized using the mixed finite element method and piecewise linear functions on triangular elements has been well-studied for domains in R2. Here we study the analogous problem on polyhedral surfaces. In particular, we provide a convergence proof of discrete solutions to the corresponding smooth solution of the biharmonic equation. We obtain convergence rates that are identical to the ones known for the planar setting. Our proof relies on a novel bound for the Linf error of the linear FEM for the Poisson equation on curved surfaces, as well as inverse discrete Laplacians to bound the error between discrete solutions on the surface and the polyhedral mesh approximating it.

[1]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  L. R. Scott Finite element techniques for curved boundaries , 1973 .

[4]  Athanasios Stylianou,et al.  Comparison and sign preserving properties of bilaplace boundary value problems in domains with corners , 2010 .

[5]  A. R. Mitchell,et al.  Curved elements in the finite element method , 1974 .

[6]  Leonard R. Herrmann,et al.  Finite-Element Bending Analysis for Plates , 1967 .

[7]  M. Zlámal Curved Elements in the Finite Element Method. I , 1973 .

[8]  C. Bernardi Optimal finite-element interpolation on curved domains , 1989 .

[9]  Michel Fortin,et al.  Mixed Finite Elements, Compatibility Conditions, and Applications , 2008 .

[10]  Reinhard Scholz A mixed method for 4th order problems using linear finite elements , 1978 .

[11]  R. Pierre,et al.  Mixed finite element for the linear plate problem: the Hermann-Miyoshi model revisited , 1996 .

[12]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[13]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[14]  M. Wardetzky Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation , 2007 .

[15]  Olga Sorkine-Hornung,et al.  Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.

[16]  Eitan Grinspun,et al.  A quadratic bending model for inextensible surfaces , 2006, SGP '06.

[17]  Johnny Guzmán,et al.  A Mixed Method for the Biharmonic Problem Based On a System of First-Order Equations , 2011, SIAM J. Numer. Anal..

[18]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  Olga Sorkine-Hornung,et al.  Smooth Shape‐Aware Functions with Controlled Extrema , 2012, Comput. Graph. Forum.

[21]  C. M. Elliott,et al.  Surface Finite Elements for Parabolic Equations , 2007 .

[22]  Olga Sorkine-Hornung,et al.  Mixed Finite Elements for Variational Surface Modeling , 2010, Comput. Graph. Forum.

[23]  Franco Brezzi,et al.  Sur la methode des elements finis hybrides pour le probleme biharmonique , 1975 .

[24]  Zheng Li,et al.  A Stable Mixed Element Method for the Biharmonic Equation with First-Order Function Spaces , 2017, Comput. Methods Appl. Math..

[25]  Peter Monk,et al.  A mixed finite element method for the biharmonic equation , 1987 .

[26]  F. Gazzola,et al.  Polyharmonic Boundary Value Problems , 2010 .

[27]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[28]  K. Polthier,et al.  On the convergence of metric and geometric properties of polyhedral surfaces , 2007 .

[29]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[30]  Qiang Du,et al.  Finite element approximation of the Cahn–Hilliard equation on surfaces , 2011 .

[31]  Tetsuhiko Miyoshi Convergence of Finite Element Solutions Represented by a Non-conforming Basis , 1972 .

[32]  Dietrich Braess Finite Elements: Introduction , 2007 .

[33]  Alan Demlow,et al.  Hybridizable discontinuous Galerkin and mixed finite element methods for elliptic problems on surfaces , 2016, Math. Comput..

[34]  Eitan Grinspun,et al.  Cubic shells , 2007, SCA '07.

[35]  Mats G. Larson,et al.  A continuous/discontinuous Galerkin method and a priori error estimates for the biharmonic problem on surfaces , 2013, Math. Comput..

[36]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..