Multi-robot coalition formation problem: Task allocation with adaptive immigrants based genetic algorithms

Multi-robot coalition formation (MRCF) problem deals with the formation of subsets of robotic to handle a particular task. In such a system, every task is executed by multiple robots. Thus, cooperation and coordination among the robots is very important. One of the key issues to be investigated for smooth operation of a multi-robot systems is finding an optimal task allocation among the suitably formed robot groups (sub sets). Considering the complete execution of available tasks, the problem of assigning available resources (robot features) to the tasks is computationally complex, which may further increase as number of tasks increases. Genetic algorithms (GA) have been found quite efficient in solving such complex computational problems. There are several algorithms based on GA to solve MRCF problems but none of them have considered the dynamic variants. Thus we apply immigrants based GAs viz. RIGA (random immigrants genetic algorithm) and EIGA (elitism based immigrants genetic algorithm) to optimal task allocation in MRCF problem. Comparative performance evaluation has been made with respect to SGA (standard genetic algorithm). Finally, we report a novel use of these algorithms making them adaptive with certain modification in their traditional attributes by adaptively choosing the parameters of genetic operators. We name them as aRIGA (adaptive RIGA) and aEIGA (adaptive EIGA). Simulations experiments have demonstrated that RIGA and EIGA produces better solutions then SGA in both the cases (with fixed and adaptive genetic operators). Among them, EIGA and aEIGA outperforms RIGA and aRIGA respectively.

[1]  Haesun Park,et al.  Statistical properties analysis of real world tournament selection in genetic algorithms , 2008, Applied Intelligence.

[2]  Fatma A. Omara,et al.  Genetic algorithms for task scheduling problem , 2010, J. Parallel Distributed Comput..

[3]  Xin Yao,et al.  Empirical analysis of evolutionary algorithms with immigrants schemes for dynamic optimization , 2009, Memetic Comput..

[4]  Lovekesh Vig,et al.  Coalition Formation: From Software Agents to Robots , 2007, J. Intell. Robotic Syst..

[5]  John J. Grefenstette,et al.  Genetic Algorithms for Tracking Changing Environments , 1993, ICGA.

[6]  Kenli Li,et al.  Quantum evolutionary algorithm for multi-robot coalition formation , 2009, GEC '09.

[7]  Lynne E. Parker,et al.  A Complete Methodology for Generating Multi-Robot Task Solutions using ASyMTRe-D and Market-Based Task Allocation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[8]  Jiannong Cao,et al.  Dynamic genetic algorithms for the dynamic load balanced clustering problem in mobile ad hoc networks , 2013, Expert Syst. Appl..

[9]  Pranab K. Muhuri,et al.  Particle swam optimization based reliability-redundancy allocation in a type-2 fuzzy environment , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[10]  Pranab K. Muhuri,et al.  NSGA-II based energy efficient scheduling in real-time embedded systems for tasks with deadlines and execution times as type-2 fuzzy numbers , 2013, 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[11]  Lovekesh Vig,et al.  Multi-robot coalition formation , 2006, IEEE Transactions on Robotics.

[12]  Sarit Kraus,et al.  Task Allocation Via Coalition Formation Among Autonomous Agents , 1995, IJCAI.

[13]  Onn Shehory,et al.  Coalition structure generation with worst case guarantees , 2022 .

[14]  Shengxiang Yang,et al.  Genetic Algorithms with Memory- and Elitism-Based Immigrants in Dynamic Environments , 2008, Evolutionary Computation.

[15]  Pranab K. Muhuri,et al.  Fuzzy multi-objective reliability-redundancy allocation problem , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[16]  S. N. Sivanandam,et al.  Introduction to genetic algorithms , 2007 .

[17]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[18]  John J. Grefenstette,et al.  Genetic Algorithms for Changing Environments , 1992, PPSN.

[19]  Pranab K. Muhuri,et al.  Real-time power aware scheduling for tasks with type-2 fuzzy timing constraints , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[20]  Hui-Yi Liu,et al.  Multi-Robot Cooperation Coalition Formation Based on Genetic Algorithm , 2006, 2006 International Conference on Machine Learning and Cybernetics.

[21]  Shengxiang Yang,et al.  Evolutionary dynamic optimization: A survey of the state of the art , 2012, Swarm Evol. Comput..

[22]  Pranab K. Muhuri,et al.  Multi-objective Bayesian optimization algorithm for real-time task scheduling on heterogeneous multiprocessors , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[23]  Kaushal K. Shukla,et al.  Task Scheduling under Uncertain Timing Constraints in Real-Time Embedded Systems , 2013 .

[24]  Jingan Yang,et al.  Coalition formation mechanism in multi-agent systems based on genetic algorithms , 2007, Appl. Soft Comput..

[25]  Terence C. Fogarty,et al.  Comparison of steady state and generational genetic algorithms for use in nonstationary environments , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[26]  Kaushal K. Shukla,et al.  Real-time task scheduling with fuzzy uncertainty in processing times and deadlines , 2008, Appl. Soft Comput..

[27]  Sarit Kraus,et al.  Methods for Task Allocation via Agent Coalition Formation , 1998, Artif. Intell..

[28]  Pranab K. Muhuri,et al.  Energy efficient task scheduling with Type-2 fuzzy uncertainty , 2015, 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).