Weak Convergence to Stable Lévy Processes for Nonuniformly Hyperbolic Dynamical Systems

We consider weak invariance principles (functional limit theorems) in the domain of a stable law. A general result is obtained on lifting such limit laws from an induced dynamical system to the original system. An important class of examples covered by our result are Pomeau-Manneville intermittency maps, where convergence for the induced system is in the standard Skorohod J1 topology. For the full system, convergence in the J1 topology fails, but we prove convergence in theM1 topology.

[1]  Matthew Nicol,et al.  A vector-valued almost sure invariance principle for hyperbolic dynamical systems , 2006, math/0606535.

[2]  Roland Zweimüller,et al.  STABLE LIMITS FOR PROBABILITY PRESERVING MAPS WITH INDIFFERENT FIXED POINTS , 2003 .

[3]  A. Skorokhod Limit Theorems for Stochastic Processes , 1956 .

[4]  Mark Holland,et al.  Central limit theorems and invariance principles for Lorenz attractors , 2007 .

[5]  Franz Hofbauer,et al.  Ergodic properties of invariant measures for piecewise monotonic transformations , 1982 .

[6]  L. Young Recurrence times and rates of mixing , 1999 .

[7]  Limit Theorems in the Stadium Billiard , 2005, math/0502453.

[8]  S. Gouëzel,et al.  ALMOST SURE INVARIANCE PRINCIPLE FOR DYNAMICAL SYSTEMS BY SPECTRAL METHODS , 2009, 0907.1404.

[9]  G. B. Arous,et al.  SCALING LIMIT FOR TRAP MODELS ON Z d , 2007 .

[10]  I. Melbourne,et al.  Decay of Correlations and Invariance Principles for Dispersing Billiards with Cusps, and Related Planar Billiard Flows , 2008, 0805.3048.

[11]  C. Liverani Decay of correlations , 1995 .

[12]  Walter Philipp,et al.  Approximation by Brownian motion for Gibbs measures and flows under a function , 1984, Ergodic Theory and Dynamical Systems.

[13]  C. Liverani,et al.  A probabilistic approach to intermittency , 1999, Ergodic Theory and Dynamical Systems.

[14]  Jérôme Dedecker,et al.  On the functional central limit theorem for stationary processes , 2000 .

[15]  Matthew Nicol,et al.  Statistical properties of endomorphisms and compact group extensions , 2004 .

[16]  M. Tyran-Kamińska WEAK CONVERGENCE TO LÉVY STABLE PROCESSES IN DYNAMICAL SYSTEMS , 2010 .

[17]  N. Chernov,et al.  Limit Theorems for Dispersing Billiards with Cusps , 2011 .

[18]  M. Ratner The central limit theorem for geodesic flows onn-dimensional manifolds of negative curvature , 1973 .

[19]  Georg A. Gottwald,et al.  Central limit theorems and suppression of anomalous diffusion for systems with symmetry , 2014, 1404.0770.

[20]  Statistical properties of a skew product with a curve of neutral points , 2003, Ergodic Theory and Dynamical Systems.

[21]  Andrei Török,et al.  Central Limit Theorems and Invariance Principles¶for Time-One Maps of Hyperbolic Flows , 2002 .

[22]  Andrei Török,et al.  Statistical limit theorems for suspension flows , 2004 .

[23]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[24]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[25]  D. Burkholder Distribution Function Inequalities for Martingales , 1973 .

[26]  Lai-Sang Young,et al.  Markov Extensions and Decay of Correlations for Certain Hénon Maps , 2000, Astérisque.

[27]  D. Szász,et al.  Limit Laws and Recurrence for the Planar Lorentz Process with Infinite Horizon , 2007 .

[28]  J. Conze,et al.  Méthode de martingales et flot géodésique sur une surface de courbure constante négative , 2001, Ergodic Theory and Dynamical Systems.

[29]  M. Rosenblatt Central limit theorem for stationary processes , 1972 .

[30]  L. Young,et al.  STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .

[31]  Ian Melbourne,et al.  Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions , 2003, Ergodic Theory and Dynamical Systems.

[32]  G. Eagleson Some Simple Conditions for Limit Theorems to Be Mixing , 1977 .

[33]  Jon Aaronson,et al.  LOCAL LIMIT THEOREMS FOR PARTIAL SUMS OF STATIONARY SEQUENCES GENERATED BY GIBBS–MARKOV MAPS , 2001 .

[34]  Weak invariance principle and exponential bounds for some special functions of intermittent maps , 2009 .

[35]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[36]  Roland Zweimüller Mixing Limit Theorems for Ergodic Transformations , 2007 .

[37]  Sebastien Gouezel,et al.  Central limit theorem and stable laws for intermittent maps , 2002, math/0211117.

[38]  Scaling limit for trap models on ℤd , 2006, math/0606719.

[39]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[40]  Matthew Nicol,et al.  Communications in Mathematical Physics Almost Sure Invariance Principle for Nonuniformly Hyperbolic Systems , 2022 .

[41]  Florin Avram,et al.  Weak Convergence of Sums of Moving Averages in the $\alpha$-Stable Domain of Attraction , 1992 .

[42]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.