Isogeometric analysis of the Cahn–Hilliard phase-field model

[1]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[2]  Helmut Abels,et al.  Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy , 2007 .

[3]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[4]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Cahn-Hilliard type equations , 2007, J. Comput. Phys..

[5]  Héctor D. Ceniceros,et al.  A nonstiff, adaptive mesh refinement-based method for the Cahn-Hilliard equation , 2007, J. Comput. Phys..

[6]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[7]  Roy H. Stogner,et al.  C1 macroelements in adaptive finite element methods , 2007 .

[8]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[9]  I. Fonseca,et al.  Surfactants in Foam Stability: A Phase-Field Model , 2007 .

[10]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[11]  Stig Larsson,et al.  THE CAHN-HILLIARD EQUATION , 2007 .

[12]  Krishna Garikipati,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[13]  Peter Sternberg,et al.  Periodic phase separation: the periodic Cahn-Hilliard and isoperimetric problems , 2006 .

[14]  Richard Welford,et al.  A multigrid finite element solver for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[15]  Harald Garcke,et al.  Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid , 2005, Math. Comput..

[16]  Xingde Ye,et al.  The Fourier spectral method for the Cahn-Hilliard equation , 2005, Appl. Math. Comput..

[17]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[18]  G. Benderskaya,et al.  Embedded Runge-Kutta methods for field-circuit coupled problems with switching elements , 2005, IEEE Transactions on Magnetics.

[19]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[20]  Andreas Prohl,et al.  Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits , 2003, Math. Comput..

[21]  Harald Garcke,et al.  A Diffuse Interface Model for Alloys with Multiple Components and Phases , 2004, SIAM J. Appl. Math..

[22]  Pascal Romon,et al.  The periodic isoperimetric problem , 2003 .

[23]  B. Vollmayr-Lee,et al.  Fast and accurate coarsening simulation with an unconditionally stable time step. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[25]  Harald Garcke,et al.  Transient coarsening behaviour in the Cahn–Hilliard model , 2003 .

[26]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[27]  S. Tremaine,et al.  On the Origin of Irregular Structure in Saturn's Rings , 2002, astro-ph/0211149.

[28]  Stefano Finzi Vita,et al.  Area-preserving curve-shortening flows: from phase separation to image processing , 2002 .

[29]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[30]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[31]  Jonathan Goodman,et al.  Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime , 2002 .

[32]  M. Markus,et al.  Oscillations and turbulence induced by an activating agent in an active medium. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Regularity of solutions of the Cahn–Hilliard equation with concentration dependent mobility , 2001 .

[34]  N. Goldenfeld,et al.  Phase field model for three-dimensional dendritic growth with fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[36]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[37]  Harald Garcke,et al.  A mathematical model for grain growth in thin metallic films , 2000 .

[38]  Harald Garcke,et al.  A singular limit for a system of degenerate Cahn-Hilliard equations , 2000, Advances in Differential Equations.

[39]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[40]  Jie Shen,et al.  Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  W. Shyy,et al.  Computation of Solid-Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids , 1999 .

[42]  Il,et al.  Universal dynamics of phase-field models for dendritic growth , 1998, cond-mat/9810189.

[43]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[44]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  Harald Garcke,et al.  On anisotropic order parameter models for multi-phase system and their sharp interface limits , 1998 .

[46]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[47]  Danan Fan,et al.  Diffuse-interface description of grain boundary motion , 1997 .

[48]  R. Chella,et al.  Mixing of a two-phase fluid by cavity flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[50]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[51]  J. Lang Two-dimensional fully adaptive solutions of reaction-diffusion equations , 1995 .

[52]  Arnaud Debussche,et al.  On the Cahn-Hilliard equation with a logarithmic free energy , 1995 .

[53]  Zhi-zhong Sun,et al.  A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation , 1995 .

[54]  James D. Gunton,et al.  Large scale simulations of the two-dimensional Cahn-Hilliard model , 1995 .

[55]  Morton E. Gurtin,et al.  Dynamic solid-solid transitions with phase characterized by an order parameter , 1994 .

[56]  Kjell Gustafsson,et al.  Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods , 1991, TOMS.

[57]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[58]  Charles M. Elliott,et al.  Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy , 1992 .

[59]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[60]  C. M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part I: Mathematical analysis , 1991, European journal of applied mathematics.

[61]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[62]  Paul C. Fife,et al.  Thermodynamically consistent models of phase-field type for the kinetics of phase transitions , 1990 .

[63]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[64]  G. Caginalp,et al.  Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. , 1989, Physical review. A, General physics.

[65]  Ben P. Sommeijer,et al.  Embedded diagonally implicit Runge-Kutta algorithms on parallel computers , 1989 .

[66]  P. Sternberg The effect of a singular perturbation on nonconvex variational problems , 1988 .

[67]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[68]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .

[69]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[70]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[71]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[72]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[73]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[74]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[75]  L. Landau,et al.  On the theory of superconductivity , 1955 .

[76]  K. Cheng Theory of Superconductivity , 1948, Nature.