Quantifying Forest Biomass Carbon Stocks From Space

Purpose of ReviewThis review presents cutting-edge methods and current and forthcoming satellite remote sensing technologies to map aboveground biomass (AGB).Recent FindingsThe monitoring of carbon stored in living AGB of forest is of key importance to understand the global carbon cycle and for the functioning of international economic mechanisms aiming to protect and enhance forest carbon stocks. The main challenge of monitoring AGB lies in the difficulty of obtaining field measurements and allometric models in several parts of the world due to geographical remoteness, lack of capacity, data paucity or armed conflicts. Space-borne remote sensing in combination with ground measurements is the most cost-efficient technology to undertake the monitoring of AGB.SummaryThese approaches face several challenges: lack of ground data for calibration/validation purposes, signal saturation in high AGB, coverage of the sensor, cloud cover persistence or complex signal retrieval due to topography. New space-borne sensors to be launched in the coming years will allow accurate measurements of AGB in high biomass forests (>200 t ha−1) for the first time across large areas.

[1]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[2]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[3]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[4]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[6]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[7]  C. Tucker,et al.  A Global 9-yr Biophysical Land Surface Dataset from NOAA AVHRR Data , 2000 .

[8]  Giles M. Foody,et al.  Mapping the biomass of Bornean tropical rain forest from remotely sensed data , 2001 .

[9]  Q. Ketterings,et al.  Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests , 2001 .

[10]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001 .

[11]  R. Dubayah,et al.  Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest , 2002 .

[12]  W. Cohen,et al.  Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height , 2002 .

[13]  Christiane Schmullius,et al.  Large-scale mapping of boreal forest in Siberia , 2003 .

[14]  J. Townshend,et al.  Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm , 2003 .

[15]  Achim Hein Processing of SAR Data: Fundamentals, Signal Processing, Interferometry , 2003 .

[16]  Heiko Balzter,et al.  Classification of forest volume resources using ERS tandem coherence and JERS backscatter data , 2004 .

[17]  Richard Condit,et al.  Error propagation and scaling for tropical forest biomass estimates. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[18]  Achim Hein,et al.  Processing of SAR Data , 2004 .

[19]  K. F. Wells,et al.  Predicting tree diameter and height from above-ground biomass for four eucalypt species , 1991, Trees.

[20]  M.S. Patricio,et al.  Biomass Equations for Castanea sativa High Forest in the Northwest of Portugal , 2004 .

[21]  Fabio Del Frate,et al.  On neural network algorithms for retrieving forest biomass from SAR data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Miroslav Dudík,et al.  A maximum entropy approach to species distribution modeling , 2004, ICML.

[23]  Thuy Le Toan,et al.  Relating Radar Remote Sensing of Biomass to Modelling of Forest Carbon Budgets , 2004 .

[24]  M. Ashton,et al.  Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .

[25]  Laurent Saint-André,et al.  Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo , 2005 .

[26]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[27]  A. Belward,et al.  GLC2000: a new approach to global land cover mapping from Earth observation data , 2005 .

[28]  M. Schlerf,et al.  Remote sensing of forest biophysical variables using HyMap imaging spectrometer data , 2005 .

[29]  Heiko Balzter,et al.  Modelling relationships between birds and vegetation structure using airborne LiDAR data: a review with case studies from agricultural and woodland environments , 2005 .

[30]  Raisa Mäkipää,et al.  Biomass and stem volume equations for tree species in Europe , 2005, Silva Fennica Monographs.

[31]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[32]  S. Cloude Polarization coherence tomography , 2006 .

[33]  Heiko Balzter,et al.  The application of Lidar in woodland bird ecology: climate, canopy structure and habitat quality , 2006 .

[34]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[35]  N. H. Ravindranath,et al.  2006 IPCC Guidelines for National Greenhouse Gas Inventories , 2006 .

[36]  M. Kanninen,et al.  BIOMASS OF TEAK PLANTATIONS IN TAMIL NADU, INDIA AND COSTA RICA COMPARED , 2006 .

[37]  M. Schlerf Determination of structural and chemical forest attributes using hyperspectral remote sensing data : case studies in Norway spruce forests , 2006 .

[38]  E. Næsset Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accomplished in Scandinavia , 2007 .

[39]  Michael A. Lefsky,et al.  Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms , 2007 .

[40]  Sandra A. Brown,et al.  Monitoring and estimating tropical forest carbon stocks: making REDD a reality , 2007 .

[41]  R. Houghton,et al.  Mapping Russian forest biomass with data from satellites and forest inventories , 2007 .

[42]  J. Heikkinen,et al.  Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery , 2007 .

[43]  H. Balzter,et al.  Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry , 2007 .

[44]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[45]  H. Balzter,et al.  Observations of forest stand top height and mean height from interferometric SAR and LiDAR over a conifer plantation at Thetford Forest, UK , 2007 .

[46]  Dmitry Schepaschenko,et al.  Semi-empirical models for assessing biological productivity of Northern Eurasian forests , 2007 .

[47]  P. Muukkonen,et al.  Generalized allometric volume and biomass equations for some tree species in Europe , 2007, European Journal of Forest Research.

[48]  Steffen Fritz,et al.  A Global Forest Growing Stock, Biomass and Carbon Map Based on FAO Statistics , 2008 .

[49]  K. Soudani,et al.  Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass , 2008 .

[50]  K. Itten,et al.  Estimating foliar biochemistry from hyperspectral data in mixed forest canopy , 2008 .

[51]  G. Bonan Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests , 2008, Science.

[52]  S. Goetz,et al.  Reply to Comment on ‘A first map of tropical Africa’s above-ground biomass derived from satellite imagery’ , 2008, Environmental Research Letters.

[53]  Peter Bunting,et al.  Retrieving forest biomass through integration of CASI and LiDAR data , 2008 .

[54]  Holly K. Gibbs,et al.  New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 , 2008 .

[55]  K. Ranson,et al.  Forest vertical structure from GLAS : An evaluation using LVIS and SRTM data , 2008 .

[56]  Y. Hu,et al.  Mapping the height and above‐ground biomass of a mixed forest using lidar and stereo Ikonos images , 2008 .

[57]  M. D. Nelson,et al.  Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information , 2008 .

[58]  Clement Atzberger,et al.  Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture , 2008, Int. J. Appl. Earth Obs. Geoinformation.

[59]  R. Dubayah,et al.  Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest , 2008 .

[60]  I. Hajnsek,et al.  Recent advances in Polarimetric SAR Interferometry for forest parameter estimation , 2008, 2008 IEEE Radar Conference.

[61]  Sassan Saatchi,et al.  Mapping landscape scale variations of forest structure, biomass, and productivity in Amazonia , 2009 .

[62]  Emilio Chuvieco,et al.  Aboveground biomass assessment in Colombia: a remote sensing approach. , 2009 .

[63]  P. Waggoner,et al.  Forest inventories: discrepancies and uncertainties. , 2009 .

[64]  S. Goetz,et al.  Importance of biomass in the global carbon cycle , 2009 .

[65]  F. Kraxner,et al.  An assessment of monitoring requirements and costs of 'Reduced Emissions from Deforestation and Degradation' , 2009, Carbon balance and management.

[66]  I. Woodhouse,et al.  Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes , 2009 .

[67]  J. Evans,et al.  Gradient modeling of conifer species using random forests , 2009, Landscape Ecology.

[68]  D. Roy,et al.  Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States , 2010 .

[69]  Erkki Tomppo,et al.  A report to the food and agriculture organization of the united nations (FAO) in support of sampling study for National Forestry Resources Monitoring and Assessment (NAFORMA) in Tanzania , 2010 .

[70]  Mathias Schardt,et al.  EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements , 2010 .

[71]  Masanobu Shimada,et al.  An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[72]  D. A. King,et al.  Height-diameter allometry of tropical forest trees , 2010 .

[73]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[74]  D. Roberts,et al.  Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors , 2011 .

[75]  J. Navar Biomass component equations for Latin American species and groups of species , 2009, Annals of Forest Science.

[76]  Ning Zhang,et al.  Assessment of boreal forest biomass using L-band radiometer SMOS data , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[77]  Sandra Englhart,et al.  Aboveground biomass retrieval in tropical forests — The potential of combined X- and L-band SAR data use , 2011 .

[78]  Janet E. Nichol,et al.  Improved Biomass Estimation Using the Texture Parameters of Two High-Resolution Optical Sensors , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[79]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[80]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[81]  M. Hansen,et al.  Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis , 2011 .

[82]  Urs Wegmüller,et al.  Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements , 2011 .

[83]  J. Bryan Blair,et al.  Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion , 2011 .

[84]  Sassan Saatchi,et al.  Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest-savanna boundary region of central Africa using multi-temporal L-band radar backscatter , 2011 .

[85]  M. Herold,et al.  Mapping biomass with remote sensing: a comparison of methods for the case study of Uganda , 2011, Carbon balance and management.

[86]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[87]  G. Asner,et al.  A universal airborne LiDAR approach for tropical forest carbon mapping , 2011, Oecologia.

[88]  Martial Bernoux,et al.  Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. , 2011 .

[89]  F. Rocca,et al.  The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle , 2011 .

[90]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[91]  David Saah,et al.  Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates , 2012 .

[92]  Steffen Fritz,et al.  A platform to visualize, analyze and improve Biomass datasets: http://biomass.geo-wiki.org , 2012 .

[93]  A. Baccini,et al.  Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda , 2012 .

[94]  J. Carreiras,et al.  Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa) , 2012 .

[95]  Heiko Balzter,et al.  Retrieval of Savanna Vegetation Canopy Height from ICESat-GLAS Spaceborne LiDAR With Terrain Correction , 2013, IEEE Geoscience and Remote Sensing Letters.

[96]  Nicholas C. Coops,et al.  Integrating airborne LiDAR and space-borne radar via multivariate kriging to estimate above-ground biomass , 2013 .

[97]  Jörgen Wallerman,et al.  Estimating forest biomass and height using optical stereo satellite data and a DTM from laser scanning data , 2013 .

[98]  A. L. Abbott,et al.  Estimating Forest Canopy Height using Photon-counting Laser Altimetry , 2013 .

[99]  Oleg Antropov,et al.  Improved Mapping of Tropical Forests With Optical and SAR Imagery, Part II: Above Ground Biomass Estimation , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[100]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[101]  James A. Westfall,et al.  NACP Aboveground Biomass and Carbon Baseline Data, V.2 (NBCD 2000), U.S.A., 2000 , 2013 .

[102]  Oleg Antropov,et al.  Improved Mapping of Tropical Forests With Optical and SAR Imagery, Part I: Forest Cover and Accuracy Assessment Using Multi-Resolution Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[103]  Biomass: new mission selected as the 7th ESA Earth Explorer Mission , 2013 .

[104]  I. Woodhouse,et al.  Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest-savanna boundary region of central Africa using multi-temporal L-band radar backscatter , 2011 .

[105]  S. Goetz,et al.  Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps , 2013, Carbon Balance and Management.

[106]  Roberta E. Martin,et al.  High-fidelity national carbon mapping for resource management and REDD+ , 2013, Carbon Balance and Management.

[107]  João Manuel de Brito Carreiras,et al.  Estimating the Above-Ground Biomass in Miombo Savanna Woodlands (Mozambique, East Africa) Using L-Band Synthetic Aperture Radar Data , 2013, Remote. Sens..

[108]  Wataru Takeuchi,et al.  PALSAR 50 m Mosaic Data Based National Level Biomass Estimation in Cambodia for Implementation of REDD+ Mechanism , 2013, PloS one.

[109]  S. Magnussen,et al.  Mapping attributes of Canada ’ s forests at moderate resolution through k NN and MODIS imagery , 2014 .

[110]  Roberta E. Martin,et al.  Targeted carbon conservation at national scales with high-resolution monitoring , 2014, Proceedings of the National Academy of Sciences.

[111]  R. Valentini,et al.  Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data , 2014 .

[112]  Hao Wu,et al.  Mapping Forest Biomass Using Remote Sensing and National Forest Inventory in China , 2014 .

[113]  StinsonG.,et al.  Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery , 2014 .

[114]  Maurizio Santoro,et al.  Comparative analysis and fusion for improved global biomass mapping , 2014 .

[115]  Scott J. Goetz,et al.  The Global Ecosystem Dynamics Investigation , 2014 .

[116]  Oliver Cartus,et al.  A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico , 2014, Remote. Sens..

[117]  J. Terborgh,et al.  Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites , 2014, Global ecology and biogeography : a journal of macroecology.

[118]  C. Schmullius,et al.  Carbon stock and density of northern boreal and temperate forests , 2014 .

[119]  Feng Zhao,et al.  Deciphering the Precision of Stereo IKONOS Canopy Height Models for US Forests with G-LiHT Airborne LiDAR , 2014, Remote. Sens..

[120]  Michael A. Lefsky,et al.  Prospects of photon counting lidar for savanna ecosystem structural studies , 2014 .

[121]  Guoqing Sun,et al.  The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient , 2015 .

[122]  M. Keller,et al.  Seeing the forest beyond the trees , 2015 .

[123]  Nicolas Baghdadi,et al.  Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR data: Application on French Guiana , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[124]  Fabian Ewald Fassnacht,et al.  Modeling forest biomass using Very-High-Resolution data—Combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images , 2015 .

[125]  Barbara Koch,et al.  Mapping forest biomass from space - Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[126]  R. Dubayah,et al.  Small Sample Sizes Yield Biased Allometric Equations in Temperate Forests , 2015, Scientific Reports.

[127]  D. B. Coyle,et al.  Laser transmitter development for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar , 2015, SPIE Optical Engineering + Applications.

[128]  Shilong Piao,et al.  MODIS Based Estimation of Forest Aboveground Biomass in China , 2015, PloS one.

[129]  Urs Wegmüller,et al.  Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR , 2015 .

[130]  Matthew F. McCabe,et al.  Recent reversal in loss of global terrestrial biomass , 2015 .

[131]  Fátima L. Benítez,et al.  Evaluation of geostatistical techniques to estimate the spatial distribution of aboveground biomass in the Amazon rainforest using high-resolution remote sensing data , 2016 .

[132]  Ute Beyer,et al.  Remote Sensing And Image Interpretation , 2016 .

[133]  Heiko Balzter,et al.  Airborne S-Band SAR for Forest Biophysical Retrieval in Temperate Mixed Forests of the UK , 2016, Remote. Sens..

[134]  Sassan Saatchi,et al.  Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests , 2016, Remote. Sens..

[135]  Philippe Richaume,et al.  SMOS retrieval over forests: Exploitation of optical depth and tests of soil moisture estimates , 2016 .

[136]  Jin Liu,et al.  Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data , 2016, Remote. Sens..

[137]  Heiko Balzter,et al.  Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico , 2016 .

[138]  Arief Wijaya,et al.  An integrated pan‐tropical biomass map using multiple reference datasets , 2016, Global change biology.

[139]  Multi-Scale Mapping of Forest Growing Stock Volume Using Envisat ASAR, ALOS PALSAR Landsat, and ICESat GLAS , 2016 .

[140]  J. Wheeler,et al.  Methodology for Regional to Global Mapping of Aboveground Forest Biomass , 2017 .