Effects of carrier concentration on the dielectric function of ZnO:Ga and In 2 O 3 : Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption

We have determined the dielectric functions of ZnO:Ga and ${\mathrm{In}}_{2}{\mathrm{O}}_{3}:\mathrm{Sn}$ with different carrier concentrations by spectroscopic ellipsometry. The dielectric functions have been obtained from ellipsometry analyses using the Drude and Tauc-Lorentz models. With increasing Hall carrier concentration ${N}_{\text{Hall}}$ in a range from ${10}^{19}\phantom{\rule{0.3em}{0ex}}\text{to}\phantom{\rule{0.3em}{0ex}}{10}^{21}\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}3}$, the dielectric functions of ZnO:Ga and ${\mathrm{In}}_{2}{\mathrm{O}}_{3}:\mathrm{Sn}$ show drastic changes due to increases in (i) free-carrier absorption in a low-energy region and (ii) the Burstein-Moss shift in a high-energy region. The analyses of the dielectric functions revealed reductions in high-frequency dielectric constant ${\ensuremath{\epsilon}}_{\ensuremath{\infty}}$ and increases in plasma energy ${E}_{\mathrm{p}}$ as ${N}_{\text{Hall}}$ in the films increases. From a set of the parameters $({N}_{\text{Hall}},\phantom{\rule{0.2em}{0ex}}{\ensuremath{\epsilon}}_{\ensuremath{\infty}},\phantom{\rule{0.2em}{0ex}}{E}_{\mathrm{p}})$ determined experimentally, effective mass ${m}^{*}$ of ZnO:Ga and ${\mathrm{In}}_{2}{\mathrm{O}}_{3}:\mathrm{Sn}$ is extracted. In contrast to previous studies, we found linear increases in ${m}^{*}$ with increasing ${N}_{\text{Hall}}$. When the variations of ${m}^{*}$ with carrier concentration are taken into account, carrier concentrations determined optically from spectroscopic ellipsometry show remarkable agreement with those estimated by Hall measurements. Nevertheless, the electron mobility obtained from spectroscopic ellipsometry and Hall measurements indicates rather poor agreement. We attributed this to the presence of grain boundaries in the films. In this article, we discuss various effects of carrier concentration on the optical properties of transparent conductive oxides.

[1]  Shinzo Takata,et al.  Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering , 1992 .

[2]  I. Sieber,et al.  Free-carrier plasma resonance effects and electron transport in reactively sputtered degenerate ZnO:Al films , 1999 .

[3]  Robert Clanget Ionized impurity scattering in degenerate In2O3 , 1973 .

[4]  I. Hamberg,et al.  Optical properties of sputter-deposited ZnO:Al thin films , 1988 .

[5]  R. Collins,et al.  Analysis of specular and textured SnO2:F films by high speed four-parameter Stokes vector spectroscopy , 1999 .

[6]  John R Abelson,et al.  Spectroscopic ellipsometry of thin films on transparent substrates: A formalism for data interpretation , 1995 .

[7]  Xianghuai Liu,et al.  Intrinsic limit of electrical properties of transparent conductive oxide films , 2000 .

[8]  J. Dobrowolski,et al.  Long-wavelength cutoff filters of a new type. , 1999, Applied optics.

[9]  Y. Qu,et al.  Electrical and optical properties of ion beam sputtered ZnO:Al films as a function of film thickness , 1993 .

[10]  S. Chaudhuri,et al.  Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films , 1991 .

[11]  F. Shinoki,et al.  Optical properties of r.f. reactive sputtered tin-doped In2O3 films , 1979 .

[12]  V. Dutta,et al.  Electrical and optical properties of undoped and antimony‐doped tin oxide films , 1980 .

[13]  G. Exarhos,et al.  Spectroscopic characterization of processing-induced property changes in doped ZnO films , 1997 .

[14]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[15]  V. Dutta,et al.  Electrical and optical properties of tin oxide films doped with F and (Sb+F) , 1982 .

[16]  K. Zakrzewska,et al.  Scattering of charge carriers in transparent and conducting thin oxide films with a non-parabolic conduction band , 1989 .

[17]  R. Gordon,et al.  Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium , 1992 .

[18]  Craig M. Herzinger,et al.  Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation , 1998 .

[19]  H. Fujiwara,et al.  Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy , 2003 .

[20]  J. Woollam,et al.  Spectroscopic ellipsometry studies of indium tin oxide and other flat panel display multilayer materials , 1994 .

[21]  S. Adachi,et al.  Optical constants of ZnO , 1997 .

[22]  Shinzo Takata,et al.  Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering , 1985 .

[23]  David E. Aspnes,et al.  Dielectric properties of heavily doped crystalline and amorphous silicon from 1.5 to 6.0 eV , 1984 .

[24]  Z. Jarzȩbski Preparation and Physical Properties of Transparent Conducting Oxide Films , 1982, May 16.

[25]  G. Jellison,et al.  Optical functions of uniaxial ZnO determined by generalized ellipsometry , 1998 .

[26]  H. Köstlin,et al.  Optical and electrical properties of doped In2O3 films , 1975 .

[27]  K. Yoon,et al.  Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering , 1990 .

[28]  I. Hamberg,et al.  Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .

[29]  Gerald Earle Jellison,et al.  Erratum: ‘‘Parameterization of the optical functions of amorphous materials in the interband region’’ [Appl. Phys. Lett. 69, 371 (1996)] , 1996 .

[30]  Andreas Gombert,et al.  Incoherent superposition in ellipsometric measurements , 1997 .

[31]  K. Chopra,et al.  Transparent conductors—A status review , 1983 .

[32]  A. P. Roth,et al.  Band-gap narrowing in heavily defect-doped ZnO , 1982 .

[33]  Ilsin An,et al.  Rotating-compensator multichannel ellipsometry: Applications for real time Stokes vector spectroscopy of thin film growth , 1998 .

[34]  K. Ellmer Resistivity of polycrystalline zinc oxide films: current status and physical limit , 2001 .

[35]  Y. Shigesato,et al.  Crystallinity and electrical properties of tin-doped indium oxide films deposited by DC magnetron sputtering , 1991 .

[36]  Kamil Postava,et al.  Doping effects on optical properties of epitaxial ZnO layers determined by spectroscopic ellipsometry , 2001 .

[37]  H. Nishimura,et al.  Properties of Ga-doped ZnO films , 1997 .

[38]  T. Nagatomo,et al.  Electrical and optical properties of vacuum-evaporated indium-tin oxide films with high electron mobility , 1990 .

[39]  A. Kityk,et al.  Infinite Lifshitz point in incommensurate type-I dielectrics , 1999 .

[40]  Joshua M. Pearce,et al.  Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics , 2002, Journal of Applied Physics.

[41]  D. Aspnes Optical properties of thin films , 1982 .

[42]  T. Sameshima,et al.  Crystalline Properties of Laser Crystallized Silicon Films. , 1997 .

[43]  R. M. Mehra,et al.  Doping mechanism in aluminum doped zinc oxide films , 2004 .

[44]  Razvigor Ossikovski,et al.  Measurement of the absorption edge of thick transparent substrates using the incoherent reflection model and spectroscopic UV)visible)near IR ellipsometry , 1998 .

[45]  R. Synowicki,et al.  Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants , 1998 .

[46]  A. Gilmore,et al.  Direct measurement of density-of-states effective mass and scattering parameter in transparent conducting oxides using second-order transport phenomena , 2000 .

[47]  M. Losurdo Relationships among surface processing at the nanometer scale, nanostructure and optical properties of thin oxide films , 2004 .

[48]  D. Bäuerle,et al.  Transverse Seebeck effect in Bi2Sr2CaCu2O8 , 1997 .

[49]  A. Banerjee,et al.  Optical and electronic properties of zinc oxide films prepared by spray pyrolysis , 1985 .

[50]  H. Müller Electrical and Optical Properties of Sputtered In2O3 films. II. Optical Properties in the Near Infrared , 1968 .

[51]  A. Ennaoui,et al.  Spectroscopic ellipsometry studies of index profile of indium tin oxide films prepared by spray pyrolysis , 2002 .

[52]  B. Rech,et al.  Potential of amorphous silicon for solar cells , 1999 .

[53]  A. Shah,et al.  Free-carrier absorption in microcrystalline silicon thin films prepared by very-high-frequency glow discharge , 1994 .

[54]  M. Grätzel,et al.  Optical properties of tin‐doped indium oxide determined by spectroscopic ellipsometry , 1996 .

[55]  F. Placido,et al.  Indium–tin-oxide thin film prepared by microwave-enhanced d.c. reactive magnetron sputtering for telecommunication wavelengths , 2002 .

[56]  H. Ma,et al.  Scattering mechanisms of charge carriers in transparent conducting oxide films , 1996 .

[57]  John A. Woollam,et al.  Application of IR variable angle spectroscopic ellipsometry to the determination of free carrier concentration depth profiles , 1998 .

[58]  Christian Tanguy Analytical expression of the complex dielectric function for the Hulthén potential , 1999 .

[59]  A. R. Forouhi,et al.  Accurate and rapid determination of thickness, n and k spectra, and resistivity of indium–tin–oxide films , 1999 .

[60]  M. Zeman,et al.  Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness , 2000 .

[61]  H. Fujiwara,et al.  Real-time observation of the energy band diagram during microcrystalline silicon p–i interface formation , 2003 .