Solvability of systems of interval linear equations and inequalities

This chapter deals with solvability and feasibility (i.e., nonnegative solvability) of systems of interval linear equations and inequalities. After a few preliminary sections, we delineate in Section 2.6 eight decision problems (weak solvability of equations through strong feasibility of inequalities) that are then solved in eight successive sections 2.7 to 2.14. It turns out that four problems are solvable in polynomial time and four are NP-hard. Some of the results are easy (Theorem 2.13)) some difficult to prove (Theorem 2.14), and some are surprising (Theorem 2.24). Although solutions of several of them are already known, the complete classification of the eight problems given here is new. Some special cases (tolerance, control and algebraic solutions, systems with square matrices) are treated in Sections 2.16 to 2.19. The last, Section 2.21 contains additional notes and references to the material of this chapter. Some of the results find later applications in interval linear programming (Chapter 3) . We use the following notations. The ith row of a matrix A is denoted by A,. and the j t h column by A.j. For two matrices A, B of the same size, inequalities like A I B or A < B are understood componentwise. A is called nonnegative if 0 5 A; AT is the transpose of A. The absolute value of a matrix A = (aij) is defined by lA1 = (laijl). We use the following easy-to-prove properties valid whenever the respective operations and inequalities are defined.

[1]  J. Albrecht,et al.  Monotone Iterationsfolgen und ihre Verwendung zur Lösung linearer Gleichungssysteme , 1961 .

[2]  Siegfried M. Rump,et al.  Solving Algebraic Problems with High Accuracy , 1983, IMACS World Congress.

[3]  S. Rump Verification methods for dense and sparse systems of equations , 1994 .

[4]  J. Rohn An existence theorem for systems of linear equations , 1991 .

[5]  V. Kreinovich Computational Complexity and Feasibility of Data Processing and Interval Computations , 1997 .

[6]  Vladik Kreinovich,et al.  The Shape of the Symmetric Solution Set , 1996 .

[7]  A. Deif Sensitivity analysis in linear systems , 1986 .

[8]  G. Heindl Some inclusion results based on a generalized version of the Oettli-Prager Theorem , 1996 .

[9]  Arnold Neumaier,et al.  Linear Interval Equations , 1986, Interval Mathematics.

[10]  Willard L. Miranker,et al.  A new approach to scientific computation , 1983 .

[11]  J. Rohn Systems of linear interval equations , 1989 .

[12]  Josef Nedoma,et al.  Sign-Stable Solutions of Column-Vague Linear Equation Systems , 1997, Reliab. Comput..

[13]  Jiri Rohn,et al.  Sufficient Conditions for Regularity and Singularity of Interval Matrices , 1999, SIAM J. Matrix Anal. Appl..

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  J. Farkas Theorie der einfachen Ungleichungen. , 1902 .

[16]  Svatopluk Poljak,et al.  Checking robust nonsingularity is NP-hard , 1993, Math. Control. Signals Syst..

[17]  Siegfried M. Rump,et al.  On the solution of interval linear systems , 1991, Computing.

[18]  Arnold Neumaier,et al.  A Simple Derivation of the Hansen-Bliek-Rohn-Ning-Kearfott Enclosure for Linear Interval Equations , 1999, Reliab. Comput..

[19]  J. Nedoma Inaccurate linear equation system with a restricted-rank error matrix , 1998 .

[20]  Vladik Kreinovich,et al.  COMPUTING EXACT COMPONENTWISE BOUNDS ON SOLUTIONS OF LINEAR SYSTEMS WITH INTERVAL DATA IS NP-HARD∗ , 1995 .

[21]  Jiří Rohn Interval linear systems with prescribed column sums , 1981 .

[22]  Jürgen Herzberger,et al.  Numerical Methods and Error Bounds , 1996 .

[23]  W. Oettli On the Solution Set of a Linear System with Inaccurate Coefficients , 1965 .

[24]  V. Kreinovich,et al.  On the Shape of the Symmetric, Persymmetric, and Skew-Symmetric Solution Set , 1997, SIAM J. Matrix Anal. Appl..

[25]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[26]  J. Rohn Computing the norm ∥A∥∞,1 is NP-hard , 2000 .

[27]  Sergey P. Shary,et al.  Solving the linear interval tolerance problem , 1995 .

[28]  W. Prager,et al.  Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .

[29]  J. Nedoma Positively regular vague matrices , 2001 .

[30]  A. Neumaier Interval methods for systems of equations , 1990 .

[31]  Jiri Rohn,et al.  A note on checking regularity of interval matrices , 1995 .

[32]  J. Rohn,et al.  Linear interval inequalities , 1994 .

[33]  J. Rohn Inner Solutions of Linear Interval Systems , 1985, Interval Mathematics.

[34]  B. Kelling,et al.  Geometrische Untersuchungen zur eingeschränkten Lösungsmenge linearer Intervallgleichungssysteme , 1994 .

[35]  Jiri Rohn,et al.  Linear Programming with Inexact Data is NP‐Hard , 1998 .

[36]  Karl Nickel,et al.  Interval Mathematics 1985 , 1986, Lecture Notes in Computer Science.

[37]  Helmut Ratschek,et al.  Linear interval equations , 2005, Computing.

[38]  Sergey P. Shary,et al.  A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity , 2002, Reliab. Comput..

[39]  Eldon Hansen,et al.  Bounding the solution of interval linear equations , 1992 .

[40]  Jürgen Garloff,et al.  TOTALLY NONNEGATIVE INTERVAL MATRICES , 1980 .

[41]  Günter Mayer,et al.  On the Applicability of the Interval Gaussian Algorithm , 1998, Reliab. Comput..

[42]  Vladik Kreinovich,et al.  The Shape of the Solution Set for Systems of Interval Linear Equations with Dependent Coefficients , 1998 .

[43]  Jiri Rohn,et al.  Strong solvability of interval linear programming problems , 1981, Computing.

[44]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[45]  Jiri Rohn,et al.  Solvability of Systems of Linear Interval Equations , 2003, SIAM J. Matrix Anal. Appl..

[46]  J. Nedoma On solving vague systems of linear equations with pattern-shaped columns , 2001 .

[47]  R. B. Kearfott,et al.  A Comparison of some Methods for Solving Linear Interval Equations , 1997 .

[48]  C. Jansson Calculation of exact bounds for the solution set of linear interval systems , 1997 .

[49]  Jiří Rohn Interval solutions of linear interval equations , 1990 .

[50]  Helmut Beeck,et al.  Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen , 1975, Interval Mathematics.

[51]  Sergey P. Shary,et al.  Algebraic approach to the interval linear static identification, tolerance, and control problems, or one more application of kaucher arithmetic , 1996, Reliab. Comput..

[52]  K. Jahn Eine Theorie der Gleichungssysteme mit Intervall‐Koeffizienten , 1974 .

[53]  Götz Alefeld,et al.  On the Symmetric and Unsymmetric Solution Set of Interval Systems , 1995, SIAM J. Matrix Anal. Appl..

[54]  Karl Nickel,et al.  Die Überschätzung des Wertebereichs einer Funktion in der Intervallrechnung mit Anwendungen auf lineare Gleichungssysteme , 1977, Computing.

[55]  Sergey P. Shary,et al.  Controllable solution set to interval static systems , 1997 .

[56]  Chryssostomos Chryssostomidis,et al.  Computer methods for design automation , 1992 .

[57]  Gregory E. Coxson,et al.  Computing Exact Bounds on Elements of an Inverse Interval Matrix is NP-Hard , 1999, Reliab. Comput..

[58]  W. Gerlach,et al.  Zur lösung linearer ungleichungssysteme bei störimg der rechten seite und der koeffizientenmatrix , 1981 .