Nonlinear Potential Estimates for Generalized Stokes System

In this paper, we consider the generalized stationary Stokes system with p -growth and DiniBMO regular coefficients. The main purpose is to establish pointwise estimates for the shear rate and the associated pressure to such Stokes system in terms of an unconventional nonlinear Havin-Maz’ya-Wolff type potential of the nonhomogeneous term in the plane. As a consequence, a symmetric gradient L∞ estimate is obtained. Moreover, we derive potential estimates for the weak solution to the Stokes system without additional regularity assumptions on the coefficients in higher dimensional space. Mathematics Subject classification (2020): 35Q35; 35J92; 35B65.

[1]  Antje Baer,et al.  Direct Methods In The Calculus Of Variations , 2016 .

[2]  L. Diening,et al.  Campanato estimates for the generalized Stokes System , 2012, 1211.3893.

[3]  T. Kuusi,et al.  A nonlinear Stein theorem , 2014 .

[4]  G. Mingione,et al.  Gradient continuity estimates , 2010 .

[5]  T. Kuusi,et al.  Nonlocal Equations with Measure Data , 2014, 1406.7432.

[6]  L. Hedberg,et al.  Thin sets in nonlinear potential theory , 1983 .

[7]  A. Cianchi,et al.  Potential estimates for the p -Laplace system with data in divergence form , 2017, Journal of Differential Equations.

[8]  T. Kilpeläinen,et al.  Degenerate elliptic equations with measure data and nonlinear potentials , 1992 .

[9]  L. Hedberg Nonlinear potential theory , 1992 .

[10]  G. Mingione,et al.  Gradient estimates via non-linear potentials , 2009, 0906.4939.

[11]  L. Diening,et al.  BMO estimates for the p-Laplacian , 2012 .

[12]  J. Habermann,et al.  GRADIENT ESTIMATES VIA NON STANDARD POTENTIALS AND CONTINUITY , 2010 .

[13]  T. Kuusi,et al.  Vectorial nonlinear potential theory , 2018 .

[14]  Ricardo G. Durán,et al.  Solutions of the divergence operator on John domains , 2006 .

[15]  L. Diening,et al.  Lq theory for a generalized Stokes System , 2013 .

[16]  M. E. Bogovskii Solution of the first boundary value problem for the equation of continuity of an incompressible medium , 1979 .

[17]  O. Savin,et al.  Some Singular Minimizers in Low Dimensions in the Calculus of Variations , 2015, 1503.00671.

[18]  Lars Diening,et al.  A decomposition technique for John domains , 2010 .

[19]  Alfred P. Sloanfellowship Well-posedness for the Navier-stokes Equations , 1999 .

[20]  Lingwei Ma,et al.  Potential estimates of superquadratic elliptic systems with VMO coefficients in Reifenberg domains , 2019, Journal of Mathematical Analysis and Applications.

[21]  T. Lukkari,et al.  Wolff potential estimates for elliptic equations with nonstandard growth and applications , 2010 .

[22]  Lingwei Ma,et al.  Wolff type potential estimates for stationary Stokes systems with Dini-BMO coefficients , 2019, Communications in Contemporary Mathematics.

[23]  Namkyeong Cho,et al.  Global estimates of Generalized Non-Newtonian Stokes systems on non-smooth domains , 2019, 1903.06196.

[24]  T. Kilpeläinen,et al.  The Wiener test and potential estimates for quasilinear elliptic equations , 1994 .

[25]  G. Mingione,et al.  Gradient estimates via linear and nonlinear potentials , 2010 .

[26]  G. Mingione Gradient potential estimates , 2011 .

[27]  G. Mingione,et al.  Lipschitz Bounds and Nonuniform Ellipticity , 2019, Communications on Pure and Applied Mathematics.

[28]  Lars Diening,et al.  Fractional estimates for non-differentiable elliptic systems with general growth , 2008 .

[29]  T. Kuusi,et al.  Universal potential estimates , 2012 .

[30]  D. Labutin Potential estimates for a class of fully nonlinear elliptic equations , 2002 .

[31]  Neil S. Trudinger,et al.  On the weak continuity of elliptic operators and applications to potential theory , 2002 .