Orthotropic elastic shell model for buckling of microtubules.

In view of the fact that microtubules exhibit strong anisotropic elastic properties, an orthotropic elastic shell model for microtubules is developed to study buckling behavior of microtubules. The predicted critical pressure is found to agree well with recent unexplained experimental data on pressure-induced buckling of microtubules [Needleman, Phys. Rev. Lett. 93, 198104 (2004); Biophys. J. 89, 3410 (2005)] which are lower than that predicted by the isotropic shell model by four orders of magnitude. General buckling behavior of microtubules under axial compression or radial pressure is studied. The results show that the isotropic shell model greatly overestimates the bucking loads of microtubules, except columnlike axially compressed buckling of long microtubules (of length-to-diameter ratio larger than, say, 150). In particular, the present results also offer a plausible explanation for the length dependency of flexibility of microtubules reported in the literature.

[1]  Erwin Frey,et al.  Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length , 2005, Proceedings of the National Academy of Sciences.

[2]  C. Ru,et al.  Length-dependence of flexural rigidity as a result of anisotropic elastic properties of microtubules. , 2006, Biochemical and biophysical research communications.

[3]  F. MacKintosh,et al.  Deformation and collapse of microtubules on the nanometer scale. , 2003, Physical review letters.

[4]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[5]  C. Schönenberger,et al.  Nanomechanics of microtubules. , 2002, Physical review letters.

[6]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[7]  Kim,et al.  Elastic vibrations of microtubules in a fluid. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  E. Nogales,et al.  Structural intermediates in microtubule assembly and disassembly: how and why? , 2006, Current opinion in cell biology.

[9]  J. McIntosh,et al.  A molecular-mechanical model of the microtubule. , 2005, Biophysical journal.

[10]  C. Q. Ru,et al.  Effective bending stiffness of carbon nanotubes , 2000 .

[11]  Marileen Dogterom,et al.  Dynamic instability of microtubules is regulated by force , 2003, The Journal of cell biology.

[12]  H. Saunders,et al.  Vibration of Plates and Shells , 1983 .

[13]  J. Howard,et al.  Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape , 1993, The Journal of cell biology.

[14]  K. Ewert,et al.  Radial compression of microtubules and the mechanism of action of taxol and associated proteins. , 2005, Biophysical journal.

[15]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[16]  Chengyuan Wang,et al.  Axisymmetric and beamlike vibrations of multiwall carbon nanotubes , 2005 .

[17]  D. Odde,et al.  Mechanochemical model of microtubule structure and self-assembly kinetics. , 2005, Biophysical journal.

[18]  D. Odde,et al.  Estimates of lateral and longitudinal bond energies within the microtubule lattice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D. Ingber,et al.  Mechanical behavior in living cells consistent with the tensegrity model , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Chengyuan Wang,et al.  Pressure effect on radial breathing modes of multiwall carbon nanotubes , 2005 .

[21]  D. Boal,et al.  Mechanics of the cell , 2001 .

[22]  K. Ewert,et al.  Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions. , 2004, Physical review letters.

[23]  G. Dietler,et al.  Oscillation modes of microtubules , 2004, Biology of the cell.

[24]  Saulius Juodkazis,et al.  Flexural Rigidity of a Single Microtubule , 2002 .

[25]  C. G. Foster,et al.  Simple solution for buckling of orthotropic circular cylindrical shells , 1995 .

[26]  M. Schliwa,et al.  Flexural rigidity of microtubules measured with the use of optical tweezers. , 1996, Journal of cell science.

[27]  Henrik Flyvbjerg,et al.  Structural microtubule cap: stability, catastrophe, rescue, and third state. , 2002, Biophysical journal.

[28]  Hideo Tashiro,et al.  Flexural rigidity of individual microtubules measured by a buckling force with optical traps. , 2006, Biophysical journal.

[29]  X. Li,et al.  TRANSIENT DYNAMIC RESPONSE ANALYSIS OF ORTHOTROPIC CIRCULAR CYLINDRICAL SHELL UNDER EXTERNAL HYDROSTATIC PRESSURE , 2002 .

[30]  Stéphanie Portet,et al.  Anisotropic elastic properties of microtubules , 2005, The European physical journal. E, Soft matter.

[31]  Deborah Kuchnir Fygenson,et al.  Mechanics of Microtubule-Based Membrane Extension , 1997 .

[32]  H Tashiro,et al.  Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. , 1995, Cell motility and the cytoskeleton.

[33]  M. Kirschner,et al.  Microtubule bending and breaking in living fibroblast cells. , 1999, Journal of cell science.

[34]  J. McIntosh,et al.  Force production by disassembling microtubules , 2005, Nature.