MERMAID: Metaphor Generation with Symbolism and Discriminative Decoding

Generating metaphors is a challenging task as it requires a proper understanding of abstract concepts, making connections between unrelated concepts, and deviating from the literal meaning. In this paper, we aim to generate a metaphoric sentence given a literal expression by replacing relevant verbs. Based on a theoretically-grounded connection between metaphors and symbols, we propose a method to automatically construct a parallel corpus by transforming a large number of metaphorical sentences from the Gutenberg Poetry corpus (CITATION) to their literal counterpart using recent advances in masked language modeling coupled with commonsense inference. For the generation task, we incorporate a metaphor discriminator to guide the decoding of a sequence to sequence model fine-tuned on our parallel data to generate high-quality metaphors. Human evaluation on an independent test set of literal statements shows that our best model generates metaphors better than three well-crafted baselines 66% of the time on average. A task-based evaluation shows that human-written poems enhanced with metaphors proposed by our model are preferred 68% of the time compared to poems without metaphors.

[1]  Frank Guerin,et al.  End-to-End Sequential Metaphor Identification Inspired by Linguistic Theories , 2019, ACL.

[2]  Sabine Schulte im Walde,et al.  Distinguishing Literal and Non-Literal Usage of German Particle Verbs , 2016, NAACL.

[3]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[4]  Pragglejaz Group MIP: A Method for Identifying Metaphorically Used Words in Discourse , 2007 .

[5]  L. Barsalou,et al.  Whither structured representation? , 1999, Behavioral and Brain Sciences.

[6]  Anna Korhonen,et al.  Metaphor Identification Using Verb and Noun Clustering , 2010, COLING.

[7]  Gözde Özbal,et al.  Exploring Sensorial Features for Metaphor Identification , 2015 .

[8]  Myle Ott,et al.  fairseq: A Fast, Extensible Toolkit for Sequence Modeling , 2019, NAACL.

[9]  Fumiyo Fukumoto,et al.  DeepMet: A Reading Comprehension Paradigm for Token-level Metaphor Detection , 2020, FIGLANG.

[10]  Martha Palmer,et al.  Linguistic Analysis Improves Neural Metaphor Detection , 2019, CoNLL.

[11]  Yulia Tsvetkov,et al.  Metaphor Detection with Cross-Lingual Model Transfer , 2014, ACL.

[12]  Lydia B. Chilton,et al.  Metaphoria: An Algorithmic Companion for Metaphor Creation , 2019, CHI.

[13]  Catherine Havasi,et al.  ConceptNet 5.5: An Open Multilingual Graph of General Knowledge , 2016, AAAI.

[14]  Nanyun Peng,et al.  The Woman Worked as a Babysitter: On Biases in Language Generation , 2019, EMNLP.

[15]  Eunsol Choi,et al.  Neural Metaphor Detection in Context , 2018, EMNLP.

[16]  Saif Mohammad,et al.  Metaphor as a Medium for Emotion: An Empirical Study , 2016, *SEMEVAL.

[17]  Beata Beigman Klebanov,et al.  A Corpus of Non-Native Written English Annotated for Metaphor , 2018, NAACL-HLT.

[18]  Xiaojun Wan,et al.  How to Avoid Sentences Spelling Boring? Towards a Neural Approach to Unsupervised Metaphor Generation , 2019, NAACL.

[19]  Yejin Choi,et al.  COMET: Commonsense Transformers for Automatic Knowledge Graph Construction , 2019, ACL.

[20]  Beata Beigman Klebanov,et al.  Different Texts, Same Metaphors: Unigrams and Beyond , 2014 .

[21]  Zachary J. Mason CorMet: A Computational, Corpus-Based Conventional Metaphor Extraction System , 2004, CL.

[22]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[23]  Omer Levy,et al.  RoBERTa: A Robustly Optimized BERT Pretraining Approach , 2019, ArXiv.

[24]  Keiga Abe,et al.  A Computational Model of the Metaphor Generation Process , 2006 .

[25]  Gerard J. Steen,et al.  A method for linguistic metaphor identification : from MIP to MIPVU , 2010 .

[26]  Yorick Wilks,et al.  Making Preferences More Active , 1978, Artif. Intell..

[27]  Carlo Strapparava,et al.  Metaphor: A Computational Perspective by Tony Veale, Ekaterina Shutova and Beata Beigman Klebanov , 2016, CL.

[28]  Martha Palmer,et al.  Leveraging Syntactic Constructions for Metaphor Identification , 2018, Fig-Lang@NAACL-HLT.

[29]  Verena Rieser,et al.  Why We Need New Evaluation Metrics for NLG , 2017, EMNLP.

[30]  Smaranda Muresan,et al.  Generating similes effortlessly like a Pro: A Style Transfer Approach for Simile Generation , 2020, EMNLP.

[31]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[32]  Kilian Q. Weinberger,et al.  BERTScore: Evaluating Text Generation with BERT , 2019, ICLR.

[33]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[34]  Yann Dauphin,et al.  Hierarchical Neural Story Generation , 2018, ACL.

[35]  Jean Maillard,et al.  Black Holes and White Rabbits: Metaphor Identification with Visual Features , 2016, NAACL.

[36]  Yejin Choi,et al.  Learning to Write with Cooperative Discriminators , 2018, ACL.

[37]  Omer Levy,et al.  BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension , 2019, ACL.

[38]  Asuka Terai,et al.  A Computational System of Metaphor Generation with Evaluation Mechanism , 2010, ICANN.

[39]  Yorick Wilks,et al.  A Preferential, Pattern-Seeking, Semantics for Natural Language Inference , 1975, Artif. Intell..

[40]  Iryna Gurevych,et al.  Metaphoric Paraphrase Generation , 2020, ArXiv.

[41]  Arthur M. Jacobs,et al.  The Gutenberg English Poetry Corpus: Exemplary Quantitative Narrative Analyses , 2018, Front. Digit. Humanit..

[42]  James H. Martin A corpus-based analysis of context effects on metaphor comprehension , 2005 .

[43]  Sameer Singh,et al.  Universal Adversarial Triggers for Attacking and Analyzing NLP , 2019, EMNLP.

[44]  Suma Bhat,et al.  IlliniMet: Illinois System for Metaphor Detection with Contextual and Linguistic Information , 2020, FIGLANG.

[45]  Nanyun Peng,et al.  Content Planning for Neural Story Generation with Aristotelian Rescoring , 2020, EMNLP.

[46]  Eduard Hovy,et al.  Identifying Metaphorical Word Use with Tree Kernels , 2013 .

[47]  R. Gibbs,et al.  MIP: A method for identifying metaphorically used words in discourse , 2007 .

[48]  Raquel Hervás,et al.  Enrichment of Automatically Generated Texts Using Metaphor , 2007, MICAI.