Exact Recoverability From Dense Corrupted Observations via $\ell _{1}$-Minimization

This paper confirms a surprising phenomenon first observed by Wright under a different setting: given <i>m</i> highly corrupted measurements <i>y</i> = <i>A</i><sub>Ω·</sub><i>x*</i> + <i>e</i><sup>*</sup>, where <i>A</i><sub>Ω·</sub> is a submatrix whose rows are selected uniformly at random from rows of an orthogonal matrix <i>A</i> and <i>e</i><sup>*</sup> is an unknown sparse error vector whose nonzero entries may be unbounded, we show that with high probability, ℓ<sub>1</sub>-minimization can recover the sparse signal of interest <i>x</i><sup>*</sup> exactly from only <i>m</i> = <i>C</i> μ<sup>2</sup><i>k</i> (log<i>n</i>)<sup>2</sup>, where <i>k</i> is the number of nonzero components of <i>x</i><sup>*</sup> and μ = <i>n</i> max<i>ij Aij</i><sup>2</sup>, even if a significant fraction of the measurements are corrupted. We further guarantee that stable recovery is possible when measurements are polluted by both gross sparse and small dense errors: <i>y</i> = <i>A</i><sub>Ω·</sub><i>x</i><sup>*</sup> + <i>e</i><sup>*</sup>+ ν, where ν is the small dense noise with bounded energy. Numerous simulation results under various settings are also presented to verify the validity of the theory as well as to illustrate the promising potential of the proposed framework.

[1]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[2]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[3]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[4]  H. Rauhut Random Sampling of Sparse Trigonometric Polynomials , 2005, math/0512642.

[5]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[6]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[7]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[8]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[9]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[10]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[11]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[12]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[13]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[14]  R. Nowak,et al.  Compressed Sensing for Networked Data , 2008, IEEE Signal Processing Magazine.

[15]  J. Tropp On the conditioning of random subdictionaries , 2008 .

[16]  Trac D. Tran,et al.  Fast compressive sampling with structurally random matrices , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[17]  Holger Rauhut Stability Results for Random Sampling of Sparse Trigonometric Polynomials , 2008, IEEE Transactions on Information Theory.

[18]  Trac D. Tran,et al.  A fast and efficient algorithm for low-rank approximation of a matrix , 2009, STOC '09.

[19]  John Wright,et al.  Dense Error Correction via L1-Minimization , 2008, 0809.0199.

[20]  Richard G. Baraniuk,et al.  Exact signal recovery from sparsely corrupted measurements through the Pursuit of Justice , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[21]  John Wright,et al.  Dense Error Correction Via $\ell^1$-Minimization , 2010, IEEE Transactions on Information Theory.

[22]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Mani B. Srivastava,et al.  Compressive Oversampling for Robust Data Transmission in Sensor Networks , 2010, 2010 Proceedings IEEE INFOCOM.

[24]  Feng Wu,et al.  On the Systematic Measurement Matrix for Compressed Sensing in the Presence of Gross Errors , 2010, 2010 Data Compression Conference.

[25]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[26]  Junfeng Yang,et al.  A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[27]  Justin K. Romberg,et al.  Dynamic Updating for $\ell_{1}$ Minimization , 2009, IEEE Journal of Selected Topics in Signal Processing.

[28]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[29]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[30]  Xiaodong Li,et al.  Dense error correction for low-rank matrices via Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[31]  Xiaodong Li,et al.  Compressed Sensing and Matrix Completion with Constant Proportion of Corruptions , 2011, Constructive Approximation.

[32]  Martin J. Wainwright,et al.  Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions , 2011, ICML.

[33]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[34]  Richard G. Baraniuk,et al.  Democracy in Action: Quantization, Saturation, and Compressive Sensing , 2011 .

[35]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[36]  Helmut Bölcskei,et al.  Sparse signal recovery from sparsely corrupted measurements , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[37]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[38]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[39]  Trac D. Tran,et al.  Fast and Efficient Compressive Sensing Using Structurally Random Matrices , 2011, IEEE Transactions on Signal Processing.

[40]  Trac D. Tran,et al.  Robust Lasso With Missing and Grossly Corrupted Observations , 2011, IEEE Transactions on Information Theory.

[41]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.