Direct calculations of material parameters for gradient plasticity

Length scale parameters introduced in gradient theories of plasticity are calculated in closed form with a continuum dislocation based theory. The similarity of the governing equations in both models for the evolution of plastic deformation of a constrained thin film makes it possible to identify parameters of the gradient plasticity theory with the dislocation based model. A one-to-one identification is not possible given that gradient plasticity does not account for individual dislocations. However, by comparing the mean plastic deformation across the film thickness we find that the length scale parameter, l, introduced in the gradient plasticity theory depends on the geometry as well as material constants.

[1]  Mehran Kardar Nonequilibrium dynamics of interfaces and lines , 1998 .

[2]  J. Vlassak,et al.  The mechanical properties of freestanding electroplated Cu thin films , 2006 .

[3]  Lallit Anand,et al.  A one-dimensional theory of strain-gradient plasticity : Formulation, analysis, numerical results , 2005 .

[4]  Horacio Dante Espinosa,et al.  Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension , 2004 .

[5]  Marisol Koslowski,et al.  Scaling laws in plastic deformation , 2007 .

[6]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[7]  James R. Rice,et al.  Dislocation Nucleation from a Crack Tip" an Analysis Based on the Peierls Concept , 1991 .

[8]  Marisol Koslowski,et al.  Dislocation structures and the deformation of materials. , 2004, Physical review letters.

[9]  Amit Acharya,et al.  Lattice incompatibility and a gradient theory of crystal plasticity , 2000 .

[10]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[11]  Amit Acharya,et al.  Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of Mesoscopic Field Dislocation Mechanics: Part II , 2005 .

[12]  Michael D. Uchic,et al.  A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing , 2005 .

[13]  Norman A. Fleck,et al.  A reformulation of strain gradient plasticity , 2001 .

[14]  Morton E. Gurtin,et al.  A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations , 2002 .

[15]  Adriana Garroni,et al.  A Variational Model for Dislocations in the Line Tension Limit , 2006 .

[16]  S. Forest,et al.  Plastic slip distribution in two-phase laminate microstructures: Dislocation-based versus generalized-continuum approaches , 2003 .

[17]  Norman A. Fleck,et al.  Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity , 2001 .

[18]  S. Saigal,et al.  On boundary conditions and plastic strain-gradient discontinuity in lower-order gradient plasticity , 2004 .

[19]  Morton E. Gurtin,et al.  A comparison of nonlocal continuum and discrete dislocation plasticity predictions , 2003 .

[20]  A comparison of the strength of multilayers, thin films and nanocrystalline compacts , 2004 .

[21]  Laurent Stainier,et al.  a Phase-Field Theory of Dislocation Dynamics, Strain Hardening , 2002 .

[22]  M. Gurtin,et al.  Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations , 2002 .

[23]  John L. Bassani,et al.  Incompatibility and a simple gradient theory of plasticity , 2001 .

[24]  Marisol Koslowski,et al.  Avalanches and scaling in plastic deformation. , 2004, Physical review letters.

[25]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[26]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[27]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[28]  Saurabh Puri,et al.  Phenomenological mesoscopic field dislocation mechanics, lower-order gradient plasticity, and transport of mean excess dislocation density , 2006 .

[29]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[30]  E. Hall,et al.  The Deformation and Ageing of Mild Steel , 1951 .

[31]  Yu U. Wang,et al.  Phase field microelasticity theory and simulation of multiple voids and cracks in single crystals and polycrystals under applied stress , 2002 .

[32]  Morton E. Gurtin,et al.  On the plasticity of single crystals: free energy, microforces, plastic-strain gradients , 2000 .

[33]  J. Nye Some geometrical relations in dislocated crystals , 1953 .