Mechanism and Biological Explanation*

This article argues that the basic account of mechanism and mechanistic explanation, involving sequential execution of qualitatively characterized operations, is itself insufficient to explain biological phenomena such as the capacity of living organisms to maintain themselves as systems distinct from their environment. This capacity depends on cyclic organization, including positive and negative feedback loops, which can generate complex dynamics. Understanding cyclically organized mechanisms with complex dynamics requires coordinating research directed at decomposing mechanisms into parts (entities) and operations (activities) with research using computational models to recompose mechanisms and determine their dynamic behavior. This coordinated endeavor yields dynamic mechanistic explanations.

[1]  William Bechtel,et al.  DECOMPOSING, RECOMPOSING, AND SITUATING CIRCADIAN MECHANISMS: THREE TASKS IN DEVELOPING MECHANISTIC EXPLANATIONS , 2013 .

[2]  H. Heller,et al.  Principles of Life , 2010 .

[3]  William Bechtel,et al.  Dynamic mechanistic explanation: computational modeling of circadian rhythms as an exemplar for cognitive science. , 2010, Studies in history and philosophy of science.

[4]  William Bechtel,et al.  Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research , 2010 .

[5]  Jennifer J. Loros,et al.  Chronobiology: Biological Timekeeping , 2009 .

[6]  William Bechtel,et al.  Generalization and Discovery by Assuming Conserved Mechanisms: Cross‐Species Research on Circadian Oscillators , 2009, Philosophy of Science.

[7]  Gánti’s Chemoton Model and Life Criteria , 2008 .

[8]  Albert Goldbeter,et al.  Modeling the circadian clock: from molecular mechanism to physiological disorders. , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[9]  William Bechtel,et al.  Complex Biological Mechanisms : Cyclic , Oscillatory , and Autonomous , 2008 .

[10]  Justin L. Vincent,et al.  Intrinsic Fluctuations within Cortical Systems Account for Intertrial Variability in Human Behavior , 2007, Neuron.

[11]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[12]  M. Corbetta,et al.  Electrophysiological signatures of resting state networks in the human brain , 2007, Proceedings of the National Academy of Sciences.

[13]  Pascal Gautron,et al.  Temporal coherence , 2007, SIGGRAPH Courses.

[14]  William Bechtel,et al.  Top-down Causation Without Top-down Causes , 2007 .

[15]  D. Lloyd,et al.  Redox rhythmicity: clocks at the core of temporal coherence. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  Jan-Hendrik S. Hofmeyr,et al.  The biochemical factory that autonomously fabricates itself: A systems biological view of the living cell , 2007 .

[17]  P. Thagard,et al.  Hot Thought: Mechanisms and Applications of Emotional Cognition , 2006 .

[18]  L. Darden Reasoning in Biological Discoveries: Essays on Mechanisms, Interfield Relations, and Anomaly Resolution , 2006 .

[19]  D. Noble Music of life : biology beyond the genome , 2006 .

[20]  G. Buzsáki Rhythms of the brain , 2006 .

[21]  P. Hardin,et al.  Circadian rhythms from multiple oscillators: lessons from diverse organisms , 2005, Nature Reviews Genetics.

[22]  R. Millstein,et al.  Thinking about evolutionary mechanisms: natural selection. , 2005, Studies in history and philosophy of biological and biomedical sciences.

[23]  W. Bechtel,et al.  Explanation: a mechanist alternative. , 2005, Studies in history and philosophy of biological and biomedical sciences.

[24]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[25]  H. Krebs,et al.  Untersuchungen über die Harnstoffbildung im Tierkörper , 2005, Klinische Wochenschrift.

[26]  B. Palsson,et al.  The evolution of molecular biology into systems biology , 2004, Nature Biotechnology.

[27]  K. Ruiz-Mirazo,et al.  A Universal Definition of Life: Autonomy and Open-Ended Evolution , 2004, Origins of life and evolution of the biosphere.

[28]  Jessica Riskin,et al.  The Defecating Duck, or, the Ambiguous Origins of Artificial Life , 2003, Critical Inquiry.

[29]  Paul Thagard,et al.  Pathways to Biomedical Discovery , 2003, Philosophy of Science.

[30]  Carl F. Craver,et al.  Interlevel Experiments and Multilevel Mechanisms in the Neuroscience of Memory , 2002, Philosophy of Science.

[31]  S. Glennan Rethinking Mechanistic Explanation , 2002, Philosophy of Science.

[32]  Lindley Darden,et al.  Strategies in the interfield discovery of the mechanism of protein synthesis , 2002 .

[33]  P. Machamer,et al.  Thinking about Mechanisms , 2000, Philosophy of Science.

[34]  W. Christensen,et al.  Autonomy and the emergence of intelligence: Organised interactive construction , 2000 .

[35]  Cliff Hooker,et al.  Complexly Organised Dynamical Systems , 1999 .

[36]  S. Glennan Mechanisms and the nature of causation , 1996 .

[37]  A. Goldbeter A model for circadian oscillations in the Drosophila period protein (PER) , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  M. Goodale Image and Brain: The Resolution of the Imagery Debate , 1995 .

[39]  S. Kosslyn Image and Brain: The Resolution of the Imagery Debate , 1994, Journal of Cognitive Neuroscience.

[40]  R. Rosen Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life , 1991 .

[41]  HERBERT A. SIMON,et al.  The Architecture of Complexity , 1991 .

[42]  Jeffrey C. Hall,et al.  Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels , 1990, Nature.

[43]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[44]  S. Burger An Introduction to the Study of Experimental Medicine , 1950, The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha.

[45]  H. Krebs,et al.  The role of citric acid in intermediate metabolism in animal tissues , 1937, FEBS letters.

[46]  P E Rapp,et al.  An atlas of cellular oscillators. , 1979, The Journal of experimental biology.

[47]  H. Lorković Cellular Basis of Behavior: An Introduction to Behavioral Neurology , 1977 .

[48]  W. Wimsatt Reductionism, Levels of Organization, and the Mind-Body Problem , 1976 .

[49]  S. Kauffman Articulation of Parts Explanation in Biology and the Rational Search for Them , 1970, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[50]  Edward Mackinnon Aspects of Scientific Explanation: and Other Essays in the Philosophy of Science , 1967 .

[51]  M. Resnik,et al.  Aspects of Scientific Explanation. , 1966 .

[52]  J. Kahn,et al.  Mental Mechanisms , 1965, Mental Health.

[53]  A. Ghosh,et al.  DAMPED SINUSOIDAL OSCILLATIONS OF CYTOPLASMIC REDUCED PYRIDINE NUCLEOTIDE IN YEAST CELLS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Marie Boas,et al.  The Establishment of the Mechanical Philosophy , 1952, Osiris.

[55]  F. H. Adler Cybernetics, or Control and Communication in the Animal and the Machine. , 1949 .

[56]  H. Krebs,et al.  Untersuchungen uber die Harnstoffbildung im Tierkörper , 1932 .

[57]  W. Cannon ORGANIZATION FOR PHYSIOLOGICAL HOMEOSTASIS , 1929 .

[58]  Torsten Thunberg,et al.  Zur Kenntnis des intermediären Stoffwechsels und der dabei wirksamen Enzyme1 , 1920 .

[59]  Xavier Bichat Recherches physiologiques sur la vie et la mort , 2022 .