Perceptual Grouping as Bayesian Mixture Estimation

Perceptual grouping is the process by which the visual system organizes the image into distinct objects or clusters. Here we briefly describe a Bayesian approach to grouping, formulating it as an inverse probability problem in which the goal is to estimate the organization that best explains the observed set of visual elements. We pose the problem as an instance of mixture modeling, in which the image configuration is assumed to have been generated by a set of distinct data-generating components or sources (“objects”), whose locations and structure we seek to estimate. We illustrate the approach with three classes of source models: dot clusters, contours, and axial shapes. We show how this approach to the problem unifies and gives natural accounts of a number of perceptual grouping problems, including contour integration, shape representation, and figure/ground estimation. Highlight: A novel framework for perceptual grouping uses Bayesian mixture estimation to provide a unifying account of grouping problems, including contour integration, shape representation, and figure-ground estimation.

[1]  K. Mardia Statistics of Directional Data , 1972 .

[2]  Steven W. Zucker,et al.  Early orientation selection: Tangent fields and the dimensionality of their support , 1985, Comput. Vis. Graph. Image Process..

[3]  Peter B. Delahunt,et al.  Bayesian model of human color constancy. , 2006, Journal of vision.

[4]  Peter A. van der Helm,et al.  Simplicity versus likelihood in visual perception: from surprisals to precisals. , 2000 .

[5]  Vicky Froyen,et al.  BAYESIAN MIXTURE ESTIMATION FOR PERCEPTUAL GROUPING , 2014 .

[6]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[7]  J. Smits,et al.  The perception of a dotted line in noise: a model of good continuation and some experimental results. , 1985, Spatial vision.

[8]  R. Jacobs,et al.  Optimal integration of texture and motion cues to depth , 1999, Vision Research.

[9]  R. von der Heydt,et al.  A neural model of figure-ground organization. , 2007, Journal of neurophysiology.

[10]  Jacob Feldman,et al.  Perceptual Models of Small Dot Clusters , 1993, Partitioning Data Sets.

[11]  Donald D Hoffman,et al.  Computational Evolutionary Perception , 2012, Perception.

[12]  J. Feldman,et al.  Information along contours and object boundaries. , 2005, Psychological review.

[13]  Manish Singh,et al.  Perceptual segmentation and the perceived orientation of dot clusters: the role of robust statistics. , 2008, Journal of vision.

[14]  Jacob Feldman,et al.  Principles of contour information: Reply to Lim and Leek (2012). , 2012, Psychological review.

[15]  J. Schreiber Foundations Of Statistics , 2016 .

[16]  Jacob feldman,et al.  Bayesian contour integration , 2001, Perception & psychophysics.

[17]  G. Logan,et al.  Evaluating a computational model of perceptual grouping by proximity , 1993, Perception & Psychophysics.

[18]  W. Epstein,et al.  The status of the minimum principle in the theoretical analysis of visual perception. , 1985, Psychological bulletin.

[19]  Manish Singh,et al.  Natural Selection and Shape Perception , 2013, Shape Perception in Human and Computer Vision.

[20]  Eric T. Carlson,et al.  Medial Axis Shape Coding in Macaque Inferotemporal Cortex , 2012, Neuron.

[21]  W R Uttal,et al.  The effect of deviations from linearity on the detection of dotted line patterns. , 1973, Vision research.

[22]  J. Feldman Curvilinearity, covariance, and regularity in perceptual groups , 1997, Vision Research.

[23]  J. Feldman What is a visual object? , 2003, Trends in Cognitive Sciences.

[24]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[25]  D. Knill,et al.  Bayesian sampling in visual perception , 2011, Proceedings of the National Academy of Sciences.

[26]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[27]  A. Yuille,et al.  Object perception as Bayesian inference. , 2004, Annual review of psychology.

[28]  Adam Binch,et al.  Perception as Bayesian Inference , 2014 .

[29]  Manish Singh,et al.  Robust visual estimation as source separation. , 2010, Journal of vision.

[30]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  M. Stephens Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods , 2000 .

[32]  R. T. Cox,et al.  The Algebra of Probable Inference , 1962 .

[33]  Xiao-Jing Wang,et al.  Synaptic computation underlying probabilistic inference , 2010, Nature Neuroscience.

[34]  Georgios A. Keliris,et al.  The Role of the Primary Visual Cortex in Perceptual Suppression of Salient Visual Stimuli , 2010, The Journal of Neuroscience.

[35]  Donald D Hoffman,et al.  Natural selection and veridical perceptions. , 2010, Journal of theoretical biology.

[36]  Manish Singh,et al.  An Integrated Bayesian Approach to Shape Representation and Perceptual Organization , 2013, Shape Perception in Human and Computer Vision.

[37]  Manish Singh,et al.  A Bayesian Framework for Figure-Ground Interpretation , 2010, NIPS.

[38]  Michael N. Shadlen,et al.  Probabilistic reasoning by neurons , 2007, Nature.

[39]  J. Hochberg,et al.  A quantitative approach to figural "goodness". , 1953, Journal of experimental psychology.

[40]  Jacqueline M. Fulvio,et al.  Bayesian contour extrapolation: Geometric determinants of good continuation , 2007, Vision Research.

[41]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[42]  P. G. Vos,et al.  Configurational effects on the enumeration of dots: Counting by groups , 1982, Memory & cognition.

[43]  Rajesh P. N. Rao,et al.  Bayesian brain : probabilistic approaches to neural coding , 2006 .

[44]  James R. Pomerantz,et al.  CHAPTER 1 – Visual Form Perception: An Overview* , 1986 .

[45]  Jan J. Koenderink,et al.  Vision as a user interface , 2011, Electronic Imaging.

[46]  Manish Singh,et al.  Bayesian estimation of the shape skeleton , 2006, Proceedings of the National Academy of Sciences.

[47]  David C Knill,et al.  Mixture models and the probabilistic structure of depth cues , 2003, Vision Research.

[48]  J. Feldman,et al.  Superordinate shape classification using natural shape statistics , 2011, Cognition.

[49]  Edward H. Adelson,et al.  Motion illusions as optimal percepts , 2002, Nature Neuroscience.

[50]  Irving Biederman,et al.  Cortical representation of medial axis structure. , 2013, Cerebral cortex.

[51]  E. Leeuwenberg A perceptual coding language for visual and auditory patterns. , 1971, The American journal of psychology.

[52]  Jacqueline M. Fulvio,et al.  Visual extrapolation of contour geometry. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. Mumford,et al.  The role of the primary visual cortex in higher level vision , 1998, Vision Research.

[54]  F. Attneave,et al.  The determination of perceived tridimensional orientation by minimum criteria , 1969 .

[55]  Nick Chater,et al.  Reconciling simplicity and likelihood principles in perceptual organization. , 1996, Psychological review.

[56]  Laurence T. Maloney,et al.  Statistical Decision Theory and Biological Vision , 2005 .

[57]  Zygmunt Pizlo,et al.  Shape Perception in Human and Computer Vision: An Interdisciplinary Perspective , 2013 .

[58]  R. T. Cox The Algebra of Probable Inference , 1962 .

[59]  M. Kubovy,et al.  Grouping by Proximity and Multistability in Dot Lattices: A Quantitative Gestalt Theory , 1995 .

[60]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[61]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[62]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[63]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[64]  A. Rosenfeld,et al.  Curve Detection in a Noisy Image , 1997, Vision Research.

[65]  H. Blum Biological shape and visual science (part I) , 1973 .

[66]  Jacob Feldman,et al.  Tuning Your Priors to the World , 2013, Top. Cogn. Sci..

[67]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[68]  J. Feldman,et al.  Bayes and the Simplicity Principle in Perception Simplicity versus Likelihood Principles in Perception , 2022 .

[69]  M. Kubovy,et al.  On the Lawfulness of Grouping by Proximity , 1998, Cognitive Psychology.

[70]  L. Maloney,et al.  Decision-theoretic models of visual perception and action , 2010, Vision Research.

[71]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[72]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[73]  R. Mausfeld,et al.  Perception and the Physical World: Psychological and Philosophical Issues in Perception , 2002 .