Cohomology of torsion and completion of N-complexes

We introduce the notions of Koszul $N$-complex, $\check{\mathrm{C}}$ech $N$-complex and telescope $N$-complex, explicit derived torsion and derived completion functors in the derived category $\mathbf{D}_N(R)$ of $N$-complexes using the $\check{\mathrm{C}}$ech $N$-complex and the telescope $N$-complex. Moreover, we give an equivalence between the category of cohomologically $\mathfrak{a}$-torsion $N$-complexes and the category of cohomologically $\mathfrak{a}$-adic complete $N$-complexes, and prove that over a commutative noetherian ring, via Koszul cohomology, via RHom cohomology (resp. $\otimes$ cohomology) and via local cohomology (resp. derived completion), all yield the same invariant.

[1]  Osamu Iyama,et al.  Derived categories of N ‐complexes , 2013, J. Lond. Math. Soc..

[2]  Amin Nematbakhsh,et al.  Homotopy category of N-complexes of projective modules , 2015, 1504.01043.

[3]  Xiaoyan Yang,et al.  The homotopy category and derived category of N-complexes , 2015 .

[4]  Xiaoyan Yang,et al.  The existence of homotopy resolutions of $N$-complexes , 2015 .

[5]  James Gillespie The homotopy category of $$N$$N-complexes is a homotopy category , 2012, 1207.6792.

[6]  Liran Shaul,et al.  On the Homology of Completion and Torsion , 2010, 1010.4386.

[7]  Mark Hovey,et al.  Gorenstein model structures and generalized derived categories , 2010, Proceedings of the Edinburgh Mathematical Society.

[8]  S. Iyengar Twenty-Four Hours of Local Cohomology , 2007 .

[9]  S. Estrada Monomial Algebras over Infinite Quivers. Applications to N-Complexes of Modules , 2007 .

[10]  P. Schenzel Proregular sequences, local cohomology, and completion , 2003 .

[11]  A. Tikaradze Homological constructions on N-complexes , 2002 .

[12]  S. Iyengar,et al.  Depth and amplitude for unbounded complexes , 2002, math/0212125.

[13]  W. Dwyer,et al.  Complete modules and torsion modules , 2002 .

[14]  M. Dubois-Violette $d^N=0$ : Generalized homology , 1998 .

[15]  M. Kapranov On the q-analog of homological algebra , 1996, q-alg/9611005.

[16]  J. Lipman,et al.  Local homology and cohomology on schemes , 1995, alg-geom/9503025.

[17]  Jon P. May,et al.  Derived functors of I-adic completion and local homology , 1992 .

[18]  Eben Matlis The higher properties of R-sequences , 1978 .

[19]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[20]  R. Hartshorne Residues And Duality , 1966 .

[21]  W. Mayer A New Homology Theory. II , 1942 .

[22]  W. Mayer A New Homology Theory , 1942 .