Synchronization of discrete-time hyperchaotic systems: An application in communications

Abstract In this paper, the synchronization problem of discrete-time complex dynamics is presented. In particular, we use the model-matching approach from nonlinear control theory to synchronize two unidirectionally coupled discrete-time hyperchaotic systems. A potential application to secure/private communication of confidential information is also given. By using different (hyperchaotic) encryption schemes with a single and two transmission channels, we show that output synchronization of hyperchaotic maps is indeed suitable for encryption, transmission, and decryption of information.

[1]  R. M. López-Gutiérrez,et al.  Synchronization of chaotic solid-state Nd:YAG lasers: Application to secure communication , 2008 .

[2]  Euntai Kim,et al.  Adaptive fuzzy observer based synchronization design and secure communications of chaotic systems , 2006 .

[3]  Kevin M. Short,et al.  UNMASKING A HYPERCHAOTIC COMMUNICATION SCHEME , 1998 .

[4]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[5]  M. Lakshmanan,et al.  Secure Digital Signal Transmission by multistep parameter Modulation and Alternative Driving of Transmitter Variables , 2000, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering.

[6]  Li-Qun Chen,et al.  An open-plus-closed-loop control for discrete chaos and hyperchaos , 2001 .

[7]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[8]  César Cruz-Hernández,et al.  Communicating via synchronized time-delay Chua’s circuits , 2008 .

[9]  D. López-Mancilla,et al.  Output synchronization of chaotic systems under nonvanishing perturbations , 2008 .

[10]  Yen-Sheng Chen,et al.  Synchronization of mutual coupled chaotic systems via partial stability theory , 2007 .

[11]  Didier López-Mancilla,et al.  Experimental Realization of Binary Signals Transmission Using Chaos , 2005, J. Circuits Syst. Comput..

[12]  G. Álvarez,et al.  Breaking parameter modulated chaotic secure communication system , 2003, nlin/0311041.

[13]  César Cruz-Hernández,et al.  Output Synchronization of Chaotic Systems: Model-Matching Approach with Application to Secure Communication , 2005 .

[14]  D. Normand-Cyrot,et al.  Minimum-phase nonlinear discrete-time systems and feedback stabilization , 1987, 26th IEEE Conference on Decision and Control.

[15]  Hebertt Sira-Ramírez,et al.  Synchronization of Chaotic Systems: a generalized Hamiltonian Systems Approach , 2001, Int. J. Bifurc. Chaos.

[16]  Donghua Zhou,et al.  Chaotic secure communication based on particle filtering , 2006 .

[17]  D. López Mancilla,et al.  A note on chaos-based communication schemes , 2005 .

[18]  Donghua Zhou,et al.  A sliding mode observer based secure communication scheme , 2005 .

[19]  Rafael Castro-Linares,et al.  Stability of discrete nonlinear systems under novanishing pertuabations: application to a nonlinear model-matching problem , 1999 .

[20]  Pei Yu,et al.  Hyperchaos synchronization and control on a new hyperchaotic attractor , 2008 .

[21]  André Longtin,et al.  Synchronization of delay-differential equations with application to private communication , 1998 .

[22]  Leon O. Chua,et al.  Cryptography based on chaotic systems , 1997 .

[23]  Xikui Ma,et al.  Synchronization and parameter identification of high-dimensional discrete chaotic systems via parametric adaptive control , 2006 .

[24]  J. Yan,et al.  Robust synchronization of unified chaotic systems via sliding mode control , 2007 .

[25]  César Cruz-Hernández,et al.  Synchronization of Time-Delay Chua's Oscillator with Application to Secure Communication , 2004 .

[26]  Henk Nijmeijer,et al.  Synchronization through Filtering , 2000, Int. J. Bifurc. Chaos.

[27]  A. Tamasevicius,et al.  Synchronising hyperchaos in infinite-dimensional dynamical systems , 1998 .

[28]  Giuseppe Grassi,et al.  Observer-based hyperchaos synchronization in cascaded discrete-time systems , 2009 .

[29]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[30]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[31]  Tiegang Gao,et al.  Adaptive synchronization of a new hyperchaotic system with uncertain parameters , 2007 .

[32]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .